Как устроена и работает флешка. Flash-память. Принцип работы. Правильная эксплуатация flash-накопителей


Как работает флешка?

Флешки, или USB флэш-накопители - это устройства для хранения, записи и считывания информации. Благодаря им мы можем носить в кармане огромные массивы данных: альбомы фотографий, музыкальные концерты, прайс-листы, карты, презентации и т.п. Но каким образом это становится возможным? Поговорим в этой статье о том, как работает флешка.

Как работает флешка: устройство

Самая простая флешка рассчитана минимум на 10 000 циклов перезаписи. Но лучшие экземпляры могут выдержать и 100 000 циклов. Если не перезаписывать информацию по несколько раз на дню, этого ресурса могло бы хватить на неограниченное время. Однако, обычно данные хранятся не более 10 лет. Как правило, за это время люди успевают несколько раз заменить накопитель на более современное устройство.

И тем не менее, иногда бывает, что флеш-карта вдруг выходит из строя: при подключении компьютер «не узнаёт» её, сообщая, что это «неизвестное устройство». Чтобы понять, нужно хотя бы в общих чертах представлять её устройство.

Внутри маленького флеш-накопителя помещается несколько блоков:

  • микроконтроллер;
  • микросхема (чип) флэш-памяти;
  • источник тактовой частоты - кварцевый резонатор;
  • светодиод;
  • переключатель защиты от записи.

Основная часть - это матрица памяти. Она состоит из множества ячеек, в которых записывается информация. Одна ячейка - 1 бит информации. Компьютер использует двоичную логику: оперирует исключительно только нулями и единицами. Есть напряжение в ячейке - единица, нет напряжения - ноль. Для того, чтобы записать один знак - букву, цифру, пробел и т.п. - нужно 8 бит или 8 ячеек. 8 бит называются байтом. В каждой флешке могут храниться миллионы байт информации.

Главное достоинство матрицы памяти заключается в том, что данные не теряются при отсутствии напряжения питания, т.е. она энергонезависима.

Управляет работой ячейками памяти контроллер, это блок управления накопителя. Контроллер при подключении прогоняет ток по всем ячейкам, проверяет, где записан 0, а где 1. Сигнал с компьютера поступает на него через разъём.

В соответствии с этим сигналом-запросом блок управления обращается именно к тем ячейкам, которые указаны в запросе, и позволяет данным, записанным в этих ячейках, поступать в компьютер. Либо наоборот, контроллер считывает данные с компьютера и направляет их в выбранные ячейки.

Для нормального функционирования флешки необходима тактовая частота, которая генерируется кварцевым резонатором. Именно он задаёт скорость работы флешки.

Что делать, чтобы флешка работала без сбоев

Никогда не выдёргивайте флешку из работающего компьютера. Предварительно нужно отключить её. В этих случаях компьютер пишет, что устройство памяти можно удалить. Это означает, что с компьютера на контроллер поступил сигнал отключения, и в блок управления записалась соответствующая служебная информация.

Если выдернуть флешку без отключения, в контроллере служебная информация может сбиться, и тогда он уже не сможет подключиться к считывающему устройству. То же самое может произойти при резких перепадах напряжения.

Контроллер - самая уязвимая часть флешки. Качественная матрица памяти и кварцевый генератор почти никогда не выходят из строя. Чтобы их погубить, нужно либо разломать USB-устройство, либо подать очень высокое напряжение. А вот разъём покалечить можно, если обращаться с ним неаккуратно.

О том, что такое флэшка, Вы можете прочитать на многих сайтах. Вам также подробно расскажут, чего нельзя с ней делать. А вот как узнать, что с ней можно делать? А вот бы урок с наглядным показом по всем пунктам (от А до Я) о работе с флэшкой? Допустим, что Вы пожелали перенести с одного компа на другой текст (пускай второй комп к Интернету будет неподключен).

А во втором случае мультик, в третьем случае и то и другое. Что самое главное в уроке – ВСЕ последовательные действия переноса.

Оригинальное требование? Но ведь только таким образом можно показать, разъяснить, уберечь незнайку (камушек в огород новичков, не совладать им с флэшкой) от лишних и ненужных действий!

Информации о флешке много, а вот конкретной пошаговой “инструкции” по работе с флешкой нет! А зря! Уверена, что такие вот “трудности” есть у многих, а вот написать о них. Так что держите урок о работе с флешкой.

Вот как выглядит обычная флэшка.

Шаг 1. Вставляете ее в USB-порт (см. картинку).

Рядом с этим портом обычно находятся разъемы для наушников и микрофона.

Вот они рядом зеленого и розового цвета.

Шаг 2. Теперь нажимаете «Пуск». Затем «Мой компьютер». Среди картинок вы увидите картинку съемного диска. Название у нее может быть любое.

Главное это его наглядное изображение на картинке.

Например, «KINGSTON (F:) ». При этом «KINGSTON» означает название производителя флэшки, а (F:) – это название диска.

Шаг 3. Записывать информацию на флэшку можно, по крайней мере, 2-мя способами. Рассмотрим оба.

1 способ. Продолжим с того места, на котором остановились.

1. Щелкаем по изображению флэшки левой клавишей мышки. В результате вам откроется ее содержимое.

2. Выбирайте на рабочем столе или в любой другой папке нужный файл (текстовый документ, музыку, видео, все, что угодно), который вы хотите скопировать на флэшку.

3. Теперь захватываете его левой клавишей мыши и тащите в папку флешки. Отпускаете.

Все. Вы скопировали файл на флешку!

2. способ.

1.Выбираете нужный вам файл для копирования на флешку.

2. Щелкайте по нему правой клавишей мышки.

3. Выбираете пункт «Отправить»

4. Затем выбираете пункт с изображением флешки. В нашем примере «KINGSTON (F:) ».

5. Все, файл отправлен на флешку. Можете проверить его наличие на флешке.

Шаг 4. Информацию Вы записали. Теперь надо безопасно извлечь флешку из компьютера. Для этого делаете следующее.

На этом все. Теперь вы и работу с флешкой освоили. И готовы покорять новые компьютерные горизонты! Успехов вам в этом!

5 честных сервисов заработка в Интернете

Всем доброго дня!
Сегодняшняя статья положит начало новому, небольшому циклу статей, посвященному хранению информации, различным типам памяти, способам записывания/считывания информации и всему, что с этим связано 😉 И начнем мы с устройства хорошо нам всем знакомой Flash-памяти.

Что из себя вообще представляет Flash-память? Да просто обычная микросхема, ничем внешне не отличающаяся от любой другой. Поэтому может возникнуть резонный вопрос – а что там внутри и как вообще происходят процессы сохранения/считывания информации.

Итак, сердцем многих устройств памяти является полевой транзистор с плавающим затвором. Гениальнейшее изобретение 70-х годов 20-го века. Его отличие от обычных полевых транзисторов заключается в том, что между затвором и каналом, прямо в диэлектрике, расположен еще один проводник – который и называют плавающим затвором. Вот как все это выглядит:

На рисунке мы видим привычные нам сток-исток-затвор, а также расположенный в диэлектрике дополнительный проводник. Давайте разберемся как же это устройство работает.

Создадим между стоком и истоком разность потенциалов и подадим положительный потенциал на затвор. Что тогда произойдет? Правильно, через полевой транзистор, от стока к истоку потечет ток. Причем величина тока достаточно велика для того, чтобы “пробить” диэлектрик. В результате этого пробоя часть электронов попадет на плавающий затвор. Отрицательно заряженный плавающий затвор создает электрическое поле, которое начинает препятствовать протеканию тока в канале, в результате чего транзистор закрывается. И если отключить питание транзистора, электроны с плавающего затвора никуда не денутся и его заряд останется неизменным на долгие годы.

Но, конечно же, есть способ разрядить плавающий затвор. Для этого надо всего лишь подать на “основной” затвор напряжение противоположного знака, которое и “сгонит” все электроны, в результате чего плавающий затвор останется не заряженным.

Собственно так и происходит хранение информации – если на затворе есть отрицательный заряд, то такое состояние считается логической единицей, а если заряда нет – то это логический ноль.

С сохранением информации разобрались, осталось понять как нам считать информацию из транзистора с плавающим затвором. А все очень просто. При наличии заряда на плавающем затворе его электрическое поле препятствует протеканию тока стока. Допустим при отсутствии заряда мы могли подавать на “основной” затвор напряжение +5В, и при этом в цепи стока начинал протекать ток. При заряженном плавающем затворе такое напряжение не сможет заставить ток течь, поскольку электрическое поле плавающего затвора будет ему мешать. В этом случае ток потечет только при напряжении +10В (к примеру =)). Таким образом, мы получаем два пороговых значения напряжения. И, подав, к примеру +7.5В мы сможем по наличию или отсутствию тока стока сделать вывод о наличии или отсутствии заряда на плавающем затворе. Вот таким образом и происходит считывание сохраненной информации.

Как все это связано с Flash-памятью? А очень просто – полевой транзистор с плавающим затвором является минимальной ячейкой памяти, способной сохранить один бит информации. И любая микросхема памяти состоит из огромного количества расположенных определенным образом транзисторов. И вот теперь пришло время рассмотреть основные типы Flash-памяти. А именно я бы хотел обсудить NOR и NAND память.

Оба этих типа памяти построены на основе транзисторов с плавающим затвором, которым мы сегодня уделили немало времени) А принципиальное отличие состоит в том, каким образом соединены эти транзисторы.

Конструкция NOR использует двумерную таблицу проводников. Проводники называют линией битов и линией слов. Все стоки транзисторов подключаются к линии битов, а все затворы к линии слов. Рассмотрим пример для лучшего понимания.

Пусть нам надо считать информацию из какой-то конкретной ячейки. Эта ячейка, а точнее этот конкретный транзистор, подключен затвором на одну из линий слов, а стоком на одну из линий битов. Тогда мы просто подаем пороговое напряжение на линию слов, соответствующую затвору нашего транзистора и считываем его состояние как в том примере, что мы рассмотрели чуть выше для одной ячейки.

С NAND все несколько сложнее. Если возвращаться к аналогии с массивом, то ячейки NAND-памяти представляют собой трехмерный массив. То есть к каждой линии битов подключен не один, а сразу несколько транзисторов, что в итоге приводит к уменьшению количества проводников и увеличению компактности. Это как раз и является одним из главных преимуществ NAND-памяти. Но как же нам считать состояние определенного транзистора при такой структуре? Для понимания процесса рассмотрим схему:

Как видно из схемы, одна линия битов соответствует нескольким ячейкам. И важной особенностью является следующее: если хотя бы один из транзисторов закрыт, то на линии битов будет высокое напряжение. Вот смотрите:

Действительно, низкий уровень на линии битов будет только тогда, когда вся цепочка транзисторов окажется открытой (вспоминаем курс, посвященный полевым транзисторам 😉).

С этим вроде бы понятно, возвращаемся к нашему вопросу – как же считать состояние конкретного транзистора? А для этого недостаточно просто подать на линию слов (на затвор транзистора) пороговое напряжение и следить за сигналом на линии битов. Необходимо еще чтобы все остальные транзисторы были в открытом состоянии. А делается это так – на затвор нашего транзистора, состояние которого нам нужно считать, подается пороговое напряжение (как и в случае с NOR-памятью), а на затворы всех остальных транзисторов в этой цепочке подается повышенное напряжение, такое чтобы независимо от состояния плавающего затвора транзистор открылся. И тогда считав сигнал с линии битов мы узнаем в каком состоянии интересующий нас транзистор (ведь все остальные абсолютно точно открыты). Вот и все)

Такая вот получилась статейка сегодня) Разобрались мы с принципом работы и основными типами Flash, а также с устройством и принципом работы NAND и NOR-памяти. Надеюсь, что статья окажется полезной и понятной, до скорых встреч!

Одним из самых удобных инструментов для переноса информации с одного компьютера на другой является флеш-память или, на компьютерном жаргоне, флешка.

Флешка это маленькое, но емкое устройство для хранения данных, которое можно всегда носить с собой и подключать к любому компьютеру для обмена файлами.

К компьютеру она подключается с помощью USB-разъема. Такой разъем есть в любом современном компьютере (или ноутбуке), и найти его не сложно. В стационарных компьютерах такой разъем расположен либо на передней, либо на задней части системного блока, а на ноутбуке USB-разъемы обычно находятся где-то сбоку:

Чтобы записать информацию на флешку, её (флешку) необходимо просто вставить в USB-разъем, предварительно сняв колпачок (если он есть). USB-разъем позволяет делать «горячее» подключение, поэтому при подключении или изъятии флешки компьютер выключать не надо.

Флешка должна входить в разъем без особых усилий, поэтому если она не входит, то её надо просто развернуть другой стороной (на 180 градусов):

После подключения флешки на экране монитора, скорее всего, появится диалоговое окно автозапуска, в котором нам будет предложено выбрать способ открытия файлов, хранящихся на флешке (у вас данное окно может отличаться от моего):

Автозапуск внешних устройств иногда удобен, но я бы все же рекомендовал его отключить в целях безопасности.

Дело в том, что при включенном автозапуске внешних устройств есть большая вероятность заражения компьютера, т.к. если на флешке вдруг окажется вредоносная программа или вирус, то заражение произойдет сразу же при подключении флешки (вирус запустится автоматически).

Кроме того, не следует думать, что вирус попадает на флешку только при копировании. Имейте в виду, что если вы просто вставите флешку в зараженный компьютер (особенно это актуально, если этот компьютер находится в общественном месте) и тут же извлечете её (ничего не копируя), то даже в этом случае есть большая вероятность того, что вирус уже попал на флешку. Вставив такую флешку в свой компьютер при включенном автозапуске внешних устройств, вы вероятнее всего заразите и свой компьютер.

Отключить автозапуск внешних носителей в Windows 7 можно через Панель управления – Автозапуск (или Панель управления - Все элементы панели управления – Автозапуск ). В открывшемся окне надо снять всего одну галочку:

В Windows XP автозапуск отключается так: нажимаем Пуск - Выполнить . Далее в окне Выполнить набираем вручную gpedit.msc

В появившемся окне переходим в раздел Конфигурация компьютера - Административные шаблоны - Система - Отключить автозапуск :

Щелкаем правой кнопкой по пункту Отключить автозапуск и выбираем пункт Свойсва , а далее просто отключаем автозапуск и нажимаем Ok .

Когда автозапуск отключен, то найти содержимое флешки можно из окна Компьютер :

В этом окне по умолчанию флешка будет отображаться как Съемный диск . Полоска справа от значка показывает, сколько места на флешке занято файлами и сколько на ней осталось свободного места.

Щелкнув по значку этого устройства, мы откроем окно, в котором будет отображаться все, что есть на флешке.

Копирование, перемещение, удаление и другие действие с файлами выполняются также как и с любыми другими файлами на жестком диске. Подробнее об этом можно прочитать .

А после того как работа с файлами закончена, флешку можно извлечь, но ДЕЛАТЬ ЭТО НАДО ПРАВИЛЬНО!

Неправильное извлечение флешки может привести к её неработоспособности!

Запомните, что перед извлечением флешки её работу надо остановить. Для этого щелкаем по значку подключенного устройства, который находится в трее (правый нижний угол):

При наведении курсора на этот значок мы увидим надпись Безопасное извлечение устройств и дисков .

Если вы не видите этот значок, значит он скрыт. Найти его можно щелкнув по белому треугольнику в трее, который открывает меню со скрытыми значками:

В этом меню находим нужный нам значок:

После щелчка на этом значке на экране появится меню со списком подключенных устройств (если их подключено несколько). Нам необходимо найти наше устройство и просто щелкнуть по его названию:

На экране появится сообщение о том, что устройство может быть извлечено:

Обратите внимание, что только после появления такого сообщения флешку можно извлекать из USB-разъема. В противном случае возможно повреждение флешки (хотя может и пронесет! :))

Имейте в виду, что если в момент отключения флешки от компьютера выполнялась операция записи, то в файловой системе флешки появятся ошибки. В таком случае рекомендуется выполнить полное форматирование флешки .

Форматировать флешку не сложно, но главное перед этим скопировать важные файлы с флешки на жесткий диск (если получится), т.к. форматирование уничтожит все файлы, которые есть на флешке.

Чтобы приступить к форматированию флешки, в окне Компьютер щелкаем правой кнопкой мыши по значку флешки и в появившемся меню выбираем пункт Форматировать :

Внимательно читаем предупреждение и нажимаем Ok , чтобы начать форматирование:

Через несколько секунд форматирование будет завершено:

Теперь файловая система в полном порядке и флешка снова готова к работе!

Ну и в заключение урока дам ещё несколько советов!

1. Чтобы легче было находить вашу флешку на другом компьютере (среди остальных дисков в окне Компьютер ), её можно переименовать. Для этого щелкаем по значку Съемный диск правой кнопкой мыши, выбираем пункт Переименовать и даем флешке любое название, например «Моя флешка» .

Теперь на любом компьютере флешка будет отображаться одинаково, и именно так, как мы того хотим:

2. Время от времени желательно делать проверку флешки на ошибки.

Для проверки флешки щелкаем правой кнопкой мыши на её значке и выбираем пункт Свойства . В открывшемся окне на вкладке Сервис нажимаем кнопку Выполнить проверку, предварительно закрыв все открытые документы, с которыми мы работали (на флешке):

В следующем окне ставим все галочки и нажимаем Запуск .

3. Если вы часто пользуетесь флешкой, но USB-разъем в вашем компьютере находится в неудобном месте (например, на задней стенке системного блока), то рекомендую купить специальный USB-удлинитель (метра два длиной):

Один конец удлинителя подключите в USB-разъем компьютера (туда, куда вставляли флешку), а другой конец положите прямо на своем компьютерном столе.

Благодаря этому USB-удлинителю вам больше не надо будет лазить под стол (где обычно расположен системный блок), чтобы найти где-то сзади системного блока нужный разъем. Теперь флешку или другое внешнее USB-устройство (например, цифровой фотоаппарат) можно будет подключать к компьютеру не вставая из за стола, просто протянув руку.

Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Принцип действия

Программирование флеш-памяти

Стирание флеш-памяти

История

Характеристики

Файловые системы

Применение

Типы карт памяти








operator101 operator101

2009-02-25T22:57:33Z 2009-02-25T22:57:33Z

1 нормальный

Флеш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Распространена флэш-память, выдерживающая около 100 тысяч циклов перезаписи - намного больше, чем способна выдержать дискета или CD-RW.

Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низком энергопотреблении флеш-память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах - цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини-АТС, принтерах, сканерах), различных контроллерах.

Так же в последнее время широкое распространение получили USB флеш брелоки («флешка», USB-драйв, USB-диск), практически вытеснившие дискеты и CD.

На конец 2008 г. основным недостатком, не позволяющим устройствам на базе флеш-памяти вытеснить с рынка жёсткие диски, является высокое соотношение цена/объём, превышающее этот параметр у жестких дисков в 2-3 раза. В связи с этим и объёмы флеш-накопителей не так велики. Хотя работы в этих направлениях ведутся. Удешевляется технологический процесс, усиливается конкуренция. Многие фирмы уже заявили о выпуске SSD накопителей объёмом 256 ГБ и более.

Ещё один недостаток устройств на базе флеш-памяти по сравнению с жёсткими дисками - как ни странно, меньшая скорость. Несмотря на то, что производители SSD накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш-памяти, используемой в современных SSD накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.

В Феврале 2009г, начались поставки USB-flash drive ёмкостью 512Gb. Данная модель уже появилась в продаже в Москве. Ориентировочная стоимость такой модели для конечного потребителя планируется в пределах $250, что делает такую флэшку явным конкурентом внешних HDD. Флэшка имеет небольшие компактные размеры, интерфейс USB 2.0, скорость на чтение 11MB/сек. и 10MB/сек. для записи.Содержание [убрать]

Принцип действия

Программирование флеш-памяти

Стирание флеш-памяти

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

В основе этого типа флеш-памяти лежит ИЛИНЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.

В основе NAND типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

История

Флеш-память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Сёдзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31% рынка) и Toshiba (19% рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4"2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0, выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Intel, Hynix и Micron Technology.

Характеристики

Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с. В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 Кб/с). Так указанная скорость в 100x означает 100 Ч 150 Кб/с = 15 000 Кб/с= 14.65 Мб/с.

В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.

В 2005 году Toshiba и SanDisk представили NAND чипы объёмом 1 Гб, выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 8 Гб чип, выполненный по 40-нм технологическому процессу. В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 Гб. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. В основном на середину 2007 года USB устройства и карты памяти имеют объём от 512 Мб до 64 Гб. Самый большой объём USB устройств составляет 1 Тб.

Файловые системы

Основное слабое место флеш-памяти - количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.

Для решения этой проблемы были созданы специальные файловые системы: JFFS2 и YAFFS для GNU/Linux и exFAT для Microsoft Windows.

USB флеш-носители и карты памяти, такие как SecureDigital и CompactFlash имеют встроенный контроллер, который производит обнаружение и исправление ошибок и старается равномерно использовать ресурс перезаписи флеш-памяти. На таких устройствах не имеет смысла использовать специальную файловую систему и для лучшей совместимости применяется обычная FAT.

Применение

Флеш-карты разных типов (спичка отображена для оценки размеров)

Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.

Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания Dell с 2003 года перестала выпускать компьютеры с дисководом гибких дисков.

В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды.

Есть специальные дистрибутивы GNU/Linux и версии программ, которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе.

Технология ReadyBoost в Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия. На флеш-памяти так же основываются карты памяти, такие как SecureDigital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.

NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.

Сейчас активно рассматривается возможность замены жёстких дисков на флешпамять. В результате увеличится скорость включения компьютера, а отсутствие движущихся деталей увеличит срок службы. Например, в XO-1, «ноутбуке за 100$», который активно разрабатывается для стран третьего мира, вместо жёсткого диска будет использоваться флеш-память объёмом 1 Гб. Распространение ограничивает высокая цена за Гб и меньший срок годности, чем у жёстких дисков из-за ограниченного количества циклов записи.

Типы карт памяти

Существуют несколько типов карт памяти, используемых в сотовых телефонах.

MMC (MultiMedia Card): карточка в формате MMC имеет небольшой размер - 24х32х1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.
RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24x18x1,4 мм, а вес - около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.
DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24x18x1.4 мм.
MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14x12x1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.

SD Card (Secure Digital Card): поддерживается фирмами SanDisk, Panasonic и Toshiba. Стандарт SD является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32х24х2.1 мм). Основное отличие от MMC - технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Несмотря на родство стандартов, карты SD нельзя использовать в устройствах со слотом MMC.
SD (Trans-Flash) и SDHC (High Capacity): Старые карты SD т. н. Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2Гб для Trans-Flash и 32Гб для High Capacity (Высокой Емкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2Гб от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro).
miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21.5х20х1.4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.
microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11х15х1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.

MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент - это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20х31х1.6 мм.).