Давление воды в глубинах океана. Давление воды в глубинах океана Как зависит давление воды от глубины


Существуют легенды, что затонувшие в океане корабли не ложатся на дно, а повисают на некоторой глубине, путешествуя вместе с океанскими течениями. Справедливо ли это? Давление воды в глубинах океана действительно достигает огромных величин. На глубине 10 м давит с силой 10Н на 1 см 2 погруженного тела, на глубине 100 м – 0,1 кН, 1 000 м – 1 кН и т. д. На глубине Марианского желоба – 11,5 км – давление воды достигает почти 120 МПа. При таком давлении в глубинах океана куски дерева после извлечения на поверхность оказались настолько спрессованными, что тонули в воде, а крепко закупоренные бутылки были раздавлены давлением воды. Существует мнение, что из огнестрельного оружия, опущенного на такую глубину, нельзя выстрелить.

Можно предположить, что чудовищное давление воды в глубинах океана так уплотнит воду, что корабли и прочие тяжелые предметы зависнут в ней, и не будут тонуть. Но вода, как и все жидкости, мало поддается сжатию. Если сжать воду до такой плотности, чтобы в ней плавало , необходимо было бы уплотнить ее в 8 раз. Между тем для уплотнения только вдвое, то есть сокращения объема наполовину, необходимо давление 1100 МПа. Это соответствует глубине 110 км, что не реально!

В самом глубоком месте океана вода уплотнена на 5%. Это почти не может повлиять на условия плавания в ней различных тел, тем более что твердые предметы, погруженные в такую воду, также подвергаются этому давлению и, следовательно, тоже уплотняются. Поэтому можно сделать вывод о том, что покоятся на дне океана. Не оставляется шанса даже для перевернутых килем вверх кораблей, несмотря на то, что в некоторых помещениях судна воздух окажется плотно запертым. Возможно, что некоторые из них так и не достигают дна, оставаясь висеть в темных глубинах океана? Достаточно было бы легкого толчка, чтобы вывести такое судно из равновесия, перевернуть, наполнить водой и заставить упасть на дно. Но откуда взяться толчкам в глубине океана, где вечно царит тишина и спокойствие и куда не проникают даже отголоски бурь?

Все эти доводы основаны на физической ошибке. Опрокинутый килем вверх корабль вовсе не начнет тонуть, а останется на поверхности воды. Оказаться на полпути между уровнем океана и его дном он никак не может.

В виду того, что подобное явление никогда не наблюдалось и не проверялось с затонувшими кораблями, серьезный ученый должен оставить хоть малейшее сомнение в чем бы то ни было. Тем более что мнение о зависших кораблях разделяют многие моряки. Дело в том, что на кораблях часто имеются герметичные отсеки. И если эти отсеки не повреждены и в них остался воздух, то его давление воды в глубинах океана не сжимает, и он остается прежнего объема. Поэтому корабль, имея общую плотность выше поверхностной плотности воды океанов (почти всегда менее плотной – по причине и более высокой температуры, и меньшей солености), начинает погружаться, и когда достигает холодных (в глубине океанов температура +4 0 С, при этом плотность ее максимальна) и более соленых ее слоев, зависает на неопределенное время...

Оказывается, разбивая сосуд о борт , при его спуске на воду, мы, тем самым, нарекаем его судьбу. Она неотступно ведет его через моря и океаны, где ему суждено побывать. И если случится так, что корабль затонет – это еще не конец. Давление воды в глубинах океана может дать начало новой легенде о блуждающих зависших затонувших кораблях!

В § 147было указано, что давление водяного столба высоты 10 метров равно одной атмосфере. Плотность морской соленой воды на 1-2% больше, чем плотность пресной воды. Поэтому можно с достаточной точностью считать, что погружение в море на каждые 10 метров дает увеличение гидростатического давления на одну атмосферу. Например, подводная лодка, погрузившаяся на 100 м под воду, испытывает давление, равное 10 атм (сверх атмосферного), что примерно соответствует давлению внутри парового котла паровоза. Таким образом, каждой глубине под поверхностью воды соответствует определенное гидростатическое давление. Подводные лодки снабжают манометрами, измеряющими давление забортной воды; это позволяет определять глубину погружения.

На очень больших глубинах уже начинает быть заметной сжимаемость воды: вследствие сжатия плотность воды в глубоких слоях больше, чем на поверхности, и поэтому давление растет с глубиной несколько быстрее, чем по линейному закону, и график давления несколько отклоняется от прямой линии. Добавка давления, обусловленная сжатием воды, нарастает пропорционально квадрату глубины. На наибольшей глубине океана, равной 11 км, она достигает почти 3% от полного давления на этой глубине.

Для исследования очень больших глубин применяют батисферы и батискафы. Батисфера - это стальной полый шар, способный выдержать огромное давление воды в морских глубинах. В стенке батисферы устраиваются иллюминаторы - отверстия, герметически закрытые прочными стеклами. Прожектор освещает слои воды, куда уже не может проникнуть солнечный свет. Батисферу, в которой помещается исследователь, опускают с корабля на стальном тросе. Таким образом удавалось достигнуть глубин около 1 км. Батискафы, состоящие из батисферы, которая укреплена внизу большой стальной цистерны, заполненной бензином (рис. 254), опускаются на еще большие глубины.

Рис. 254. Батискаф

Так как бензин легче воды, то такой батискаф, может плавать в глубине моря подобно дирижаблю в воздухе. Роль легкого газа играет здесь бензин. Батискаф снабжается запасом балласта и двигателями, при помощи которых он, в отличие от батисферы, может самостоятельно передвигаться, не будучи связан с кораблем на поверхности воды.

Вначале батискаф плавает на поверхности воды, подобно всплывшей подводной лодке. Для погружения в пустые балластные отсеки впускается забортная вода, и батискаф уходит под воду, опускаясь все глубже и глубже, до самого дна. Для всплытия сбрасывают балласт и облегченный батискаф всплывает снова на поверхность. Наиболее глубокое погружение было совершено 23 января 1960 г., когда батискаф пролежал 20 минут на дне Марианской впадины в Тихом океане, на глубине 10919 м под поверхностью воды, где давление воды (рассчитанное с учетом повышения плотности воды вследствие солености и вследствие сжатия) составляло свыше 1150 атм. Исследователями, опускавшимися в батискафе, были обнаружены живые существа даже на этой наибольшей глубине мирового океана.

Пловец или аквалангист, нырнувший под воду, испытывает на всей поверхности своего тела гидростатическое давление окружающей воды сверх действующего постоянно атмосферного давления. Хотя тело водолаза (рис. 255), работающего в резиновом костюме (скафандре), не соприкасается с водой непосредственно, оно испытывает такое же давление, как и тело пловца, так как воздух в скафандре должен быть сжат до давления окружающей воды. По этой же причине и воздух, подаваемый по шлангу водолазу для дыхания, должен накачиваться под давлением, равным давлению воды на глубине погружения водолаза. Такое же давление должно быть у воздуха, поступающего из баллонов со сжатым воздухом в маску аквалангиста. Под водой приходится дышать воздухом повышенного давления.

Рис. 255. Водолаз в резиновом костюме с металлическим шлемом. Воздух водолазу подается по трубке

Рис. 256. Водолазный колокол

Не спасает подводника от повышенного давления и водолазный колокол (рис. 256), или кессон, так как и в них воздух должен быть сжат настолько, чтобы не допустить воду в колокол, т. е. до давления окружающей воды. Поэтому при постепенном погружении колокола в него все время подкачивают воздух с тем расчетом, чтобы давление воздуха было равно давлению воды на данной глубине. Повышенное давление вредно отражается на здоровье человека, и это ставит предел глубине, на которой возможна безопасная работа водолаза. Обычная глубина погружения водолаза в резиновом скафандре не превосходит 40 м: на этой глубине давление увеличено на 4 атм. Работа водолаза на большей глубине возможна только в жестком («панцирном») скафандре, принимающем на себя давление воды. В таком скафандре можно безопасно находиться на глубине до 200 м. Воздух в такой скафандр подается при атмосферном давлении.

При длительном пребывании под водой при давлении, значительно превышающем атмосферное, большое количество воздуха оказывается растворенным в крови и других жидкостях организма водолаза. Если водолаз быстро поднимается на поверхность, то воздух, растворенный под большим давлением, начинает выделяться из крови в виде пузырьков (так же, как выделяется в виде пузырьков воздух, растворенный в лимонаде, находящемся в закупоренной бутылке под повышенным давлением, при вытаскивании пробки). Выделяющиеся пузырьки причиняют резкую боль во всем теле и могут вызвать тяжелое заболевание («кессонная болезнь»). Поэтому водолаза, долго пробывшего на большой глубине, следует поднимать на поверхность медленно (часами!), чтобы растворенные газы успевали выделяться постепенно, не образуя пузырьков.

Рассмотрим равновесие однородной жидкости, находящейся в поле тяготения Земли.

На каждую частицу жидкости, находящейся в поле тяготения Земли, действует сила тяжести. Под действием этой силы каждый слой жидкости давит на расположенные под ним слои. В результате давление внутри жидкости на разных уровнях не будет одинаковым. Следовательно, в жидкостях существует давление, обусловленное ее весом.

Давление, обусловленное весом жидкости, называют гидростатическим давлением .

Для количественного расчета мысленно выделим в жидкости малый объем цилиндрической формы, расположенный вертикально, сечением S и высотой h (рис. 2). В случае неподвижной жидкости вес этого цилиндра, а значит, и сила давления на площадку S в основании будет равна силе тяжести \(~m \vec g\).

Тогда давление на площадку

\(~p = \frac{mg}{S} = \frac{\rho Vg}{S} = \frac{\rho hSg}{S} = \rho gh.\)

\(~p = \rho gh\) - гидростатическое давление , где ρ - плотность жидкости, h - высота столба жидкости. Таким образом, гидростатическое давление равно весу столба жидкости с единичным основанием и высотой, равной глубине погружения точки под свободной поверхностью жидкости.

Графически зависимость давления от глубины погружения в жидкость представлена на рисунке 3.

Давление жидкости на дно не зависит от формы сосуда, а определяется только высотой уровня жидкости и ее плотностью. Во всех случаях, приведенных на рисунке 4, давление жидкости на дно сосудов одинаково.

Жидкость давит на данной глубине одинаково по всем направлениям - не только вниз, но и вверх, и в стороны.

Следовательно, давление на стенку на данной глубине будет таким же, как и давление на горизонтальную площадку, расположенную на той же глубине.

Если над свободной поверхностью жидкости создается давление p 0 то давление в жидкости на глубине будет

\(~p = p_0 + \rho gh.\)

Обратите внимание на различие выражений: "давление жидкости на глубине h " (p = pgh ) и "давление в жидкости на глубине h " (p = p 0 + pgh ). Это надо учитывать при решении различных задач.

Силы давления на дно и на стенки можно рассчитать по формулам\[~F_d = \rho gh S_d\] - сила давления жидкости на горизонтальное дно, где S d - площадь дна;

\(~F_{st} = \frac{\rho gh}{2} S_{st}\) - сила давления жидкости на боковую прямоугольную вертикальную стенку сосуда, где S st - площадь стенки.

В покоящейся жидкости свободная поверхность жидкости всегда горизонтальна.

Нередко встречаются случаи, когда жидкость, покоясь относительно сосуда, движется вместе с ним. Если при этом сосуд движется равномерно и прямолинейно, то свободная поверхность жидкости будет горизонтальна. Но если сосуд движется с ускорением, то ситуация меняется и возникают вопросы о форме свободной поверхности жидкости, о распределении давления в ней.

Так, в случае горизонтального движения сосуда с ускорением \(~\vec a\) в поле тяготения Земли любая часть жидкости массой m движется с тем же ускорением \(~\vec a\) под действием равнодействующей силы давления \(~\vec N_d\), действующей со стороны остальной жидкости и силы тяжести \(~m \vec g\) (рис. 5).

Основное уравнение динамики:

\(~\vec N_d + m \vec g = m \vec a.\)

В результате свободная поверхность жидкости не будет горизонтальна, а образует с горизонтом угол α , который можно легко найти, если спроецировать а основное уравнение динамики на горизонтальную и вертикальную оси\[~N_d \sin \alpha = ma; \ N_d \cos \alpha = mg\]. Отсюда

\(~\operatorname{tg} = \frac ag.\)

Давление на горизонтальную поверхность (горизонтальное дно) будет возрастать в направлении, противоположном ускорению.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 95-97.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.