В чем измеряется атомная масса элемента. Относительная атомная и молекулярная массы. Аллотропия и аллотропные модификации железа


Для измерения массы атома используется относительная атомная масса, которая выражается в атомных единицах массы (а. е. м.). Относительная молекулярная масса складывается из относительных атомных масс веществ.

Понятия

Для осознания, что такое относительная атомная масса в химии, следует понимать, что абсолютная масса атома слишком мала, чтобы выражать её в граммах, а тем более в килограммах. Поэтому в современной химии за атомную единицу массы (а. е. м.) взята 1/12 часть массы углерода. Относительная атомная масса равна отношению абсолютной массы к 1/12 абсолютной массы углерода. Другими словами относительная масса отражает, во сколько раз масса атома конкретного вещества превышает 1/12 массы атома углерода. Например, относительная масса азота - 14, т.е. атом азота содержит 14 а. е. м. или в 14 раз больше, чем 1/12 часть атома углерода.

Рис. 1. Атомы и молекулы.

Среди всех элементов водород самый лёгкий, его масса равна 1 единице. Самые тяжёлые атомы имеют массу в 300 а. е. м.

Молекулярная масса - значение, показывающее, во сколько раз масса молекулы превышает 1/12 часть массы углерода. Также выражается в а. е. м. Масса молекулы складывается из массы атомов, поэтому для вычисления относительной молекулярной массы необходимо сложить значения масс атомов вещества. Например, относительная молекулярная масса воды равна 18. Это значение складывается из относительных атомных масс двух атомов водорода (2) и одного атома кислорода (16).

Рис. 2. Углерод в периодической таблице.

Как видно, эти два понятия имеют несколько общих характеристик:

  • относительная атомная и молекулярная массы вещества - безразмерные величины;
  • относительная атомная масса имеет обозначение A r , молекулярная - M r ;
  • единица измерения одинакова в обоих случаях - а. е. м.

Молярная и молекулярная массы совпадают численно, но отличаются по размерности. Молярная масса - это отношение массы вещества к количеству молей. Она отражает массу одного моля, который равен числу Авогадро, т.е. 6,02 ⋅ 10 23 . Например, 1 моль воды весит 18 г/моль, а M r (Н 2 О) = 18 а. е. м. (тяжелее в 18 раз одной атомной единицы массы).

Как рассчитать

Чтобы выразить относительную атомную массу математически, следует определить, что 1/2 часть углерода или одна атомная единица массы равна 1,66⋅10 −24 г. Следовательно, формула относительной атомной массы имеет следующий вид:

A r (X) = m a (X) / 1,66⋅10 −24 ,

где m a - абсолютная атомная масса вещества.

Относительная атомная масса химических элементов указана в периодической таблице Менделеева, поэтому её не нужно рассчитывать самостоятельно при решении задач. Относительные атомные массы принято округлять до целых. Исключение составляет хлор. Масса его атомов равна 35,5.

Следует обратить внимание, что при расчёте относительной атомной массы элементов, имеющих изотопы, учитывается их среднее значение. Атомная масса в этом случае высчитывается следующим образом:

A r = ΣA r,i n i ,

где A r,i - относительная атомная масса изотопов, n i - содержание изотопов в природных смесях.

Например, кислород имеет три изотопа - 16 О, 17 О, 18 О. Их относительная масса равна 15,995, 16,999, 17,999, а их содержание в природных смесях - 99,759 %, 0,037 %, 0,204 % соответственно. Поделив проценты на 100 и подставив значения, получим:

A r = 15,995 ∙ 0,99759 + 16,999 ∙ 0,00037 + 17,999 ∙ 0,00204 = 15,999 а.е.м.

Обратившись к периодической таблице, легко найти это значение в клетке кислорода.

Рис. 3. Таблица Менделеева.

Относительная молекулярная масса - сумма масс атомов вещества:

При определении значения относительной молекулярной массы учитываются индексы символов. Например, вычисление массы H 2 CO 3 выглядит следующим образом:

M r = 1 ∙ 2 + 12 + 16 ∙ 3 = 62 а. е. м.

Зная относительную молекулярную массу, можно вычислить относительную плотность одного газа по второму, т.е. определить, во сколько раз одно газообразное вещество тяжелее второго. Для этого используется уравнение D (y) x = M r (х) / M r (y).

Что мы узнали?

Из урока 8 класса узнали об относительной атомной и молекулярной массе. За единицу относительной атомной массы принята 1/12 часть массы углерода, равная 1,66⋅10 −24 г. Для вычисления массы необходимо абсолютную атомную массу вещества разделить на атомную единицу массы (а. е. м.). Значение относительной атомной массы указано в периодической системе Менделеева в каждой клетке элемента. Молекулярная масса вещества складывается из суммы относительных атомных масс элементов.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 219.

(1766–1844) на своих лекциях демонстрировал студентам выточенные из дерева модели атомов, показывая, как они могут соединяться, образуя различные вещества. Когда одного из студентов спросили, что такое атомы, он ответил: «Атомы – это раскрашенные в разные цвета деревянные кубики, которые изобрел мистер Дальтон».

Конечно, Дальтон прославился не своими «кубиками» и даже не тем, что в двенадцатилетнем возрасте стал школьным учителем. С именем Дальтона связано возникновение современной атомистической теории. Впервые в истории науки он задумался о возможности измерения масс атомов и предложил для этого конкретные способы. Понятно, что непосредственно взвесить атомы невозможно. Дальтон рассуждал только о «соотношении весов мельчайших частиц газообразных и других тел», то есть об относительных их массах. И поныне, хотя масса любого атома в точности известна, ее никогда не выражают в граммах, так как это исключительно неудобно. Например, масса атома урана – самого тяжелого из существующих на Земле элементов – составляет всего 3,952·10 –22 г. Поэтому массу атомов выражают в относительных единицах, показывающих, во сколько раз масса атомов данного элемента больше массы атомов другого элемента, принятого в качестве стандарта. Фактически это и есть «соотношение весов» по Дальтону, т.е. относительная атомная масса.

В качестве единицы массы Дальтон принял массу атома водорода, а для нахождения масс других атомов он использовал найденные разными исследователями процентные составы различных соединений водорода с другими элементами. Так, по данным Лавуазье , в воде содержится 15% водорода и 85% кислорода. Отсюда Дальтон нашел относительную атомную массу кислорода – 5,67 (в предположении, что в воде на один атом водорода приходится один атом кислорода). По данным английского химика Уильяма Остина (1754–1793) о составе аммиака (80% азота и 20% водорода) Дальтон определил относительную атомную массу азота, равную 4 (также в предположении о равном числе атомов водорода и азота в этом соединении). А из данных по анализу некоторых углеводородов Дальтон приписал углероду значение 4,4. В 1803 Дальтон составил первую в мире таблицу относительных атомных масс некоторых элементов. В дальнейшем эта таблица претерпела очень сильные изменения; основные из них произошли еще при жизни Дальтона, что видно из следующей таблицы, в которой приведены данные из учебников, изданных в разные годы, а также в официальном издании ИЮПАК – Международного союза теоретической и прикладной химии (International Union of Pure and Applied Chemistry).

Прежде всего, обращают на себя внимание непривычные атомные массы у Дальтона: они в несколько раз отличаются от современных! Это объясняется двумя причинами. Первая – неточность эксперимента в конце 18 – начале 19 в. Когда Гей-Люссак и Гумбольдт уточнили состав воды (12,6% Н и 87,4% О), Дальтон изменил значение атомной массы кислорода, приняв ее равной 7 (по современным данным в воде 11,1% водорода). По мере совершенствования методов измерения уточнялись атомные массы и многих других элементов. При этом за единицу измерения атомных масс сначала выбирали водород, потом – кислород, а в настоящее время – углерод .

Вторая причина более серьезная. Дальтон не знал, в каком соотношении находятся атомы разных элементов в различных соединениях, поэтому он принял наиболее простую гипотезу о соотношении 1:1. Так считали многие химики, пока не были надежно установлены и приняты химиками правильные формулы для состава воды (Н 2 О) и аммиака (NH 3), многих других соединений. Для установления формул газообразных веществ использовался закон Авогадро , позволяющий определять относительную молекулярную массу веществ. Для жидких и твердых веществ использовали другие способы (см . МОЛЕКУЛЯРНОЙ МАССЫ ОПРЕДЕЛЕНИЕ). Особенно просто было устанавливать формулы соединений элементов переменной валентности, например, хлорида железа. Относительная атомная масса хлора уже была известна из анализа ряда его газообразных соединений. Теперь, если принять, что в хлориде железа число атомов металла и хлора одинаково, то для одного хлорида относительная атомная масса железа получалась равной 27,92, а для другого – 18,62. Отсюда следовало, что формулы хлоридов FeCl 2 и FeCl 3 , и A r (Fe) = 55,85 (среднее из двух анализов). Вторая возможность – формулы FeCl 4 и FeCl 6 , и A r (Fe) = 111,7 – была исключена как маловероятная. Относительные атомные массы твердых веществ помогало находить эмпирическое правило, сформулированное в 1819 французскими учеными П.И.Дюлонгом и А.Т.Пти: произведение атомной массы на теплоемкость – величина постоянная. Особенно хорошо правило Дюлонга – Пти выполнялось для металлов, что позволило, например, Берцелиусу уточнить и исправить атомные массы некоторых из них.

При рассмотрении относительных атомных масс химических элементов, приводящихся в периодической таблице, можно заметить, что для разных элементов они даются с разной точностью. Например, для лития – с 4 значащими цифрами, для серы и углерода – с 5, для водорода – с 6, для гелия и азота – с 7, для фтора – с 8. Отчего такая несправедливость?

Оказывается, точность, с которой определяется относительная атомная масса данного элемента, зависит не столько от точности измерений, сколько от «природных» факторов, не зависящих от человека. Они связаны с непостоянством изотопного состава данного элемента: в разных образцах соотношение изотопов не вполне одинаковое. Например, при испарении воды молекулы с легкими изотопами (см . ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ) водорода переходят в газовую фазу чуть быстрее, чем молекулы тяжелой воды, содержащие изотопы 2 Н. В результате в водяных парах изотопа 2 Н немного меньше, чем в жидкой воде. Многие организмы также разделяют изотопы легких элементов (для них разница в массах более существенна, чем для тяжелых элементов). Так, при фотосинтезе растения отдают предпочтение легкому изотопу 12 С. Поэтому в живых организмах, а также произошедших от них нефти и угле содержание тяжелого изотопа 13 С понижено, а в углекислом газе и образовавшемся из него карбонатах, наоборот, – повышено. Микроорганизмы, восстанавливающие сульфаты, также накапливают легкий изотоп 32 S, поэтому в осадочных сульфатах его больше. В «остатках» же, не усвоенных бактериями, доля тяжелого изотопа 34 S больше. (Кстати, анализируя соотношение изотопов серы, геологи могут отличить осадочный источник серы от магматического. А по соотношению изотопов 12 С и 13 С можно даже отличить тростниковый сахар от свекловичного!)

Итак, для многих элементов приводить очень точные значения атомных масс просто не имеет смысла, поскольку они немного меняются от одного образца к другому. По точности, с какой приводятся атомные массы, можно сразу сказать, происходит ли в природе «разделение изотопов» данного элемента и насколько сильно. А вот, например, для фтора атомная масса приводится с очень высокой точностью; значит, атомная масса фтора в любом его земном источнике постоянна. И это неудивительно: фтор относится к так называемым элементам-одиночкам, которые в природе представлены одним-единственным нуклидом.

В периодической таблице массы некоторых элементов стоят в скобках. Это относится главным образом к актинидам, стоящим после урана (так называемые трансурановые элементы), к еще более тяжелым элементам 7-го периода, а также к нескольким более легким; среди них технеций, прометий, полоний, астат, радон, франций. Если сравнить таблицы элементов, напечатанные в разные годы, то окажется, что эти числа время от времени меняются, иногда в течение всего нескольких лет. Некоторые примеры приведены в таблице.

Причина изменений в таблицах заключается в том, что указанные элементы радиоактивны, у них нет ни одного стабильного изотопа. В таких случаях принято приводить либо относительную атомную массу наиболее долгоживущего нуклида (например, для радия), либо массовые числа; последние приводятся в скобках. Когда открывают новый радиоактивный элемент, то получают вначале лишь один из многих его изотопов – конкретный нуклид с определенным числом нейтронов. Исходя из теоретических представлений, а также экспериментальных возможностей, стараются получить нуклид нового элемента с достаточным временем жизни (с таким нуклидом легче работать), однако удавалось это «с первого захода» не всегда. Как правило, при дальнейших исследованиях выяснялось, что существуют и могут быть синтезированы новые нуклиды с бoльшим временем жизни, и тогда проставленное в Периодической таблице элементов Д.И.Менделеева число надо было заменять. Сопоставим массовые числа некоторых трансуранов, а также прометия, взятые из книг, изданных в разные годы. В скобках в таблице приведены современные данные для периодов полураспада. В старых изданиях вместо принятых в настоящее время символов элементов 104 и 105 (Rf – резерфордий и Db – дубний) фигурировали Ku – курчатовий и Ns – нильсборий.

Таблица 2.
Элемент Z Год издания
1951 1958 1983 2000
Pm 61 147 (2,62 года) 145 (18 лет) 145 145
Pu 94 239 (24100 лет) 242 (3,76 . 10 5 лет) 244 (8,2 . 10 7 лет) 244
Am 95 241 (432 года) 243 (7370 лет) 243 243
Cm 96 242 (163 сут) 245 (8500 лет) 247 (1,58 . 10 7 лет) 247
Bk 97 243 (4,5 час) 249 (330 сут) 247 (1400 лет) 247
Cf 98 245 (44 мин) 251 (900 лет) 251 251
Es 99 254 (276 сут) 254 252 (472 сут)
Fm 100 253 (3 сут) 257 (100,5 сут) 257
Md 101 256 (76 мин) 258 (52 сут) 258
No 102 255 (3,1 мин) 259 (58 мин)
Lr 103 256 (26 сек) 262 (3,6 час)
Rf 104 261 (78 сек) 261
Db 105 261 (1,8 сек) 262 (34 сек)

Как видно из таблицы, все приведенные в ней элементы радиоактивные, их периоды полураспада намного меньше возраста Земли (несколько млрд. лет), поэтому в природе этих элементов нет и получены они искусственно. По мере совершенствования техники эксперимента (синтез новых изотопов и измерение времени их жизни) иногда удавалось найти нуклиды, живущие в тысячи и даже миллионы раз дольше известных до этого. Например, когда в 1944 на циклотроне в Беркли были поставлены первые опыты по синтезу элемента № 96 (впоследствии его назвали кюрием), то единственная имевшаяся тогда возможность получения этого элемента заключалась в облучении a-частицами ядер плутония-239: 239 Pu + 4 He ® 242 Cm + 1 n. Полученный нуклид нового элемента имел период полураспада около полугода; он оказался очень удобным компактным источником энергии, и позднее его использовали с этой целью, например, на американских космических станциях «Сервейор». В настоящее время получен кюрий-247, который имеет период полураспада 16 млн. лет, что в 36 млн. раз превышает время жизни первого известного нуклида этого элемента. Так что изменения, вносимые время от времени в таблицу элементов, могут быть связаны не только с открытием новых химических элементов!

В заключение – о том, как узнали, в каком соотношении присутствуют в элементе разные изотопы? Например, о том, что в природном хлоре на долю 35 Cl приходится 75,77% (остальное – изотоп 37 Cl)? В данном случае, когда в природном элементе всего два изотопа, решить задачу поможет такая аналогия.

В 1982 в результате инфляции стоимость меди, из которых чеканились одноцентовые монеты США, превысила номинал монеты. Поэтому с этого года монеты делают из более дешевого цинка и лишь сверху покрывают тонким слоем меди. При этом содержание дорогой меди в монете снизилось с 95 до 2,5%, а масса – с 3,1 до 2,5 г. Через несколько лет, когда в обращении находилась смесь монет двух типов, преподаватели химии сообразили, что эти монеты (на глаз они почти неразличимы) – прекрасное пособие для их «изотопного анализа», либо по массе, либо по числу монет каждого типа (аналогия массовой или мольной доли изотопов в смеси). Будем рассуждать так: пусть у нас имеется 210 монет, среди которых есть и легкие, и тяжелые (это соотношение не зависит от числа монет, если их достаточно много). Пусть также общая масса всех монет равна 540 г. Если бы все эти монеты были «легкой разновидности», то общая их масса была бы равна 525 г, что на 15 г меньше действительной. Почему так? Потому что не все монеты легкие: есть среди них и тяжелые. Замена одной легкой монеты на тяжелую приводит к увеличению общей массы на 0,6 г. Нам же надо увеличить массу на 40 г. Следовательно, легких монет имеется 15/0,6 = 25. Таким образом, в смеси 25/210 = 0,119 или 11,9% легких монет. (Конечно, со временем «изотопное соотношение» монет разного типа будет меняться: легких будет все больше, тяжелых – все меньше. Для элементов же соотношение изотопов в природе постоянно.)

Точно так же и в случае изотопов хлора или меди: известна средняя атомная масса меди – 63,546 (ее определили химики, анализируя различные соединения меди), а также массы легкого 64 Cu и тяжелого 65 Cu изотопов меди (эти массы определили физики, используя свои, физические, методы). Если элемент содержит более двух стабильных изотопов, их соотношение определяется другими методами.

Наши монетные дворы – Московский и Санкт-Петербургский тоже, оказывается, чеканили разные «изотопные разновидности» монет. Причина та же – подорожание металла. Так, 10- и 20-рублевые монеты в 1992 чеканились из немагнитного медно-никелевого сплава, а в 1993 – из более дешевой стали, и эти монеты притягиваются магнитом; по внешнему виду они практически не различаются (кстати, часть монет этих годов отчеканены «не в том» сплаве, такие монеты очень редкие, а некоторые стоят дороже золота!). В 1993 чеканились также 50-рублевые монеты из медного сплава, и в том же году (гиперинфляция!) – из стали, покрытой латунью. Правда, массы наших «изотопных разновидностей» монет отличаются не так сильно, как у американских. Тем не менее, точное взвешивание кучи монет дает возможность рассчитать, сколько в них монет каждого сорта – по массе, либо по числу монет, если подсчитано общее их число.

Илья Леенсон

В процессе развития науки химия столкнулась с проблемой подсчёта количества вещества для проведения реакций и полученных в их ходе веществ.

На сегодня для подобных расчётов химической реакции между веществами и смесями используют значение относительной атомной массы, внесённой в периодическую таблицу химических элементов Д. И. Менделеева.

Химические процессы и влияние доли элемента в веществах на ход реакции

Современная наука под определением «относительная атомная масса химического элемента» подразумевает, во сколько раз масса атома данного химического элемента больше одной двенадцатой части атома углерода.

С зарождением эры химии потребность в точных определениях хода химической реакции и её результатов росла.

Поэтому химики постоянно пытались решить вопрос о точных массах взаимодействующих элементов в веществе. Одним из лучших решений на то время была привязка к самому лёгкому элементу. И вес его атома был взят за единицу.

Исторический ход подсчёта вещества

Изначально использовался водород, затем кислород. Но этот способ расчёта оказался неточным. Причиной тому послужило наличие в кислороде изотопов с массой 17 и 18.

Поэтому, имея смесь изотопов, технически получали число, отличное от шестнадцати. На сегодня относительная атомная масса элемента рассчитывается исходя из принятого за основу веса атома углерода, в соотношении 1/12.

Дальтон заложил основы относительной атомной массы элемента

Лишь спустя некоторое время, в 19-м веке, Дальтон предложил вести расчёт по самому лёгкому химическому элементу - водороду. На лекциях своим студентам он демонстрировал на вырезанных из дерева фигурках, как соединяются атомы. По другим элементам он использовал данные, ранее полученные другими учёными.

По экспериментам Лавуазье в воде содержится пятнадцать процентов водорода и восемьдесят пять процентов кислорода. Имея эти данные, Дальтон рассчитал, что относительная атомная масса элемента, входящего в состав воды, в данном случае кислорода, составляет 5,67. Ошибочность его расчётов связана с тем, что он считал неверно относительно количества атомов водорода в молекуле воды.

По его мнению, на один атом кислорода приходился один атом водорода. Воспользовавшись данными химика Остина о том, что в составе аммиака 20 процентов водорода и 80 процентов азота, он рассчитал, чему равна относительная атомная масса азота. Имея этот результат, он пришёл к интересному выводу. Получалось, что относительная атомная масса (формула аммиака ошибочно была принята с одной молекулой водорода и азота) составляет четыре. В своих расчетах ученый опирался на периодическую систему Менделеева. По анализу он рассчитал, что относительная атомная масса углерода - 4,4, вместо принятых до этого двенадцати.

Несмотря на свои серьёзные промашки, именно Дальтон первым создал таблицу некоторых элементов. Она претерпела неоднократные изменения ещё при жизни учёного.

Изотопная составляющая вещества влияет на значение точности относительного атомного веса

При рассмотрении атомных масс элементов можно заметить, что точность по каждому элементу разная. К примеру, по литию она четырёхзначная, а по фтору - восьмизначная.

Проблема в том, что изотопная составляющая каждого элемента своя и непостоянна. Например, в обычной воде содержится три типа изотопа водорода. В их число, кроме обычного водорода, входит дейтерий и тритий.

Относительная атомная масса изотопов водорода составляет соответственно два и три. «Тяжёлая» вода (образованная дейтерием и тритием) испаряется хуже. Поэтому в парообразном состоянии изотопов воды меньше, чем в жидком состоянии.

Избирательность живых организмов к различным изотопам

Живые организмы обладают селективным свойством по отношению к углероду. На построение органических молекул используют углерод с относительной атомной массой, равной двенадцати. Поэтому вещества органического происхождения, а также ряд полезных ископаемых, таких как уголь и нефть, содержат меньше изотопной составляющей, чем неорганические материалы.
Микроорганизмы, перерабатывающие и накапливающие серу, оставляют после себя изотоп серы 32. В зонах, где бактерии не перерабатывают, доля изотопа серы - 34, то есть гораздо выше. Именно на основании соотношения серы в породах почвы геологи приходят к выводу о природе происхождения слоя - магматическую природу он имеет или же осадочную.

Из всех химических элементов только один не имеет изотопов - фтор. Поэтому его относительная атомная масса более точная, чем других элементов.

Существование в природе нестабильных веществ

У некоторых элементов относительная масса указана в квадратных скобках. Как видно, это элементы, расположенные после урана. Дело в том, что они не имеют устойчивых изотопов и распадаются с выделением радиоактивного излучения. Поэтому в скобках указан наиболее устойчивый изотоп.

Со временем выяснилось, что у некоторых из них возможно получить в искусственных условиях устойчивый изотоп. Пришлось менять в периодической таблице Менделеева атомные массы некоторых трансурановых элементов.

В процессе синтеза новых изотопов и измерения их продолжительности жизни порой удавалось обнаружить нуклиды с продолжительностью полураспада в миллионы раз дольше.

Наука не стоит на месте, постоянно открываются новые элементы, законы, взаимосвязи различных процессов в химии и природе. Поэтому, в каком виде окажется химия и периодическая система химических элементов Менделеева в будущем, лет через сто, - является туманным и неопределённым. Но хочется верить, что накопленные за прошедшие века труды химиков послужат новому, более совершенному знанию наших потомков.

Относительная атомная масса (сокращенно – атомная масса ) элемента — есть отношение массы его атома к 1 /12 части массы атома 12 С (углерод).

История

Первоначально при вычислениях атомных масс за единицу массы принимали массу атома водорода как самого легкого элемента и по отношению к нему вычисляли массы других элементов. Но так как атомные массы большинства веществ определяются, исходя из состава их кислородных соединений, то фактически вычисления производились по отношению к атомной массе кислорода , которая считалась равной 16 . Отношение между атомными массами кислорода и водорода принимали равным 16 :1 . Впоследствии более точные измерения показали, что это отношение равно 15.874 :1 или 16 :1.0079 . Изменение атомной массы кислорода повлекло бы за собой изменение атомных масс большинства элементов. Поэтому было решено оставить для кислорода атомную массу 16 , приняв атомную массу водорода равной 1.0077 .

Кислородная единица массы

Таким образом, за единицу атомной массы принималась 1 /16 часть атома кислорода , получившая название кислородной единицы.

В дальнейшем было установлено, что природный кислород представляет собой смесь изотопов, так что кислородная единица массы характеризует среднее значение массы атомов природных изотопов кислорода .

Для атомной физики такая единица оказалась неприемлемой, и в этой отрасли науки за единицу атомной массы была принята 1 /16 часть массы атома кислорода 16 О. В результате оформились две школы атомных масс — химическая и физическая. Наличие двух шкал атомных масс создавало большие неудобства.

В 1961 году принята единая шкала относительных атомных масс, в основу которой положена 1 /12 часть массы атома изотопа углерода 12 С, названная атомной единицей массы (а.е.м.) .

\[ 1 а.е.м = 1.66·10^{-27} (кг) \]

В современной шкале относительные массы кислорода и водорода равны соответственно 15.9994 и 1.00794 .