Зарядное устройство-автомат с асимметричным режимом работы. Зарядное устройство аккумулятора автомобиля от сульфатации пластин Самодельное зарядное для авто аккумулятора асимметричным током


Устройства зарядки, реализующая такой принцип, показана на рисунке.При положительном полупериоде входного переменного напряжения ток протекает через элементы VD1, R1 и стабилизируется диодом VD2. Часть стабилизированного напряжения через переменный резистор R3 подается на базу транзистора VT2. Транзисторы VT2 и VT4 нижнего плеча устройства работают как генератор тока, величина которого зависит от сопротивления резистора R4 и напряжения на базе VT2. Укв схема Зарядный ток в цепи аккумулятора протекает по элементам VD3, SA1.1, РА1, SA1.2, аккумулятор, коллекторный перепад транзистора VT4, R4.При отрицательном полупериоде переменного напряжения на диоде VD1 рабо-та устройства аналогична, но работает верхнее плечо - VD1 стабилизирует отрицательное напряжение, которое регулирует протекающий по аккумулятору ток в обратном напряжении (ток разрядки). Показанный на схеме миллиамперметр РА1 используется при первоначальной настройке, в дальнейшем его можно отключить, переведя переключатель в другое положение. Такое зарядное устройство обладает следующими преимуществами:1. Зарядный и разрядный токи можно регулировать независимо товарищ от друга. Следова-тельно, в данном устройстве может быть применять аккумуляторы с различной величиной энергоемко...

Для схемы "Зарядка и восстановление аккумулятора"

При неправильной эксплуатации автомобильного аккумулятора пластины могут сульфатироваться, и он выходит из строя. Восстанавливают такие батареи зарядом "асимметричным" током, когда соотношение зарядного и разрядного токов выбрано 10:1. В этом режиме не только восстанавливают засульфатированные батареи, но и проводят профилактику исправных. ...

Для схемы "ЗАРЯДНО-ДЕСУЛЬФАТИРУЮЩИЙ АВТОМАТ ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ"

Автомобильная электроникаЗАРЯДНО-ДЕСУЛЬФАТИРУЮЩИЙ АВТОМАТ ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВА.СОРОКИН, 343902, Украина, г.Краматорск-2, а/я 37.Давно уже известен тот факт, что электрохимических источников питания током, при соотношении Iзар: Iразр = 10:1, в частности кислотных аккумуляторов, приводит к устранению сульфатации пластин в батарее, т.е. к восстановлению их емкости, что, в свою очередь, продлевает срок службы батареи.Не вечно есть вероятность находиться около зарядного устройства и все час контролировать процесс зарядки, поэтому зачастую либо систематически недозаряжают батареи, либо перезаряжают их, что, конечно же, не продлевает срок их службы.Из химии понятно, что разность потенциалов между отрицательной и положительной пластинами в аккумуляторной батарее составляет 2,1 В, что при 6 банках дает 2,1 х 6 = 12,6 В.При зарядном токе, равном 0,1 от емкости батареи, в конце заряда напряжение повышается до 2,4 В на одну банку или 2,4 х 6 = 14,4 В. Т160 схема регулятора тока Повышение зарядного тока ведет к повышению напряжения на аккумуляторе и повышенному разогреву и кипению электролита. же ниже 0,1 от емкости не позволяет доводить напряжение до 14,4 В, однако продолжительный (до трех недель) малым способствует растворению кристаллов сульфата свинца. Особенно опасны дендриты сульфата свинца, "проросшие" в сепараторах. Они и вызывают быстрый саморазряд батареи (с вечера зарядил...

Для схемы "ИЗМЕРИТЕЛЬ ЕМКОСТИ"

Измерительная техникаИЗМЕРИТЕЛЬ ЕМКОСТИЭлектролитические конденсаторы из-за понижения емкости или значительного тока утечки нередко являются причиной неисправности радиоаппаратуры. Электронный тестер, схема которого приведена на рисунке, позволяет определить целесообразность дальнейшего использования конденсатора, явившегося предположительно причиной неисправности. Совместно с многопредельным авометром (на пределе 5 В) или отдельной измерительной головкой (100 мкА), тестером, можно измерять емкости от 10 мкф до 10 000 мкф, а также качественно определить степень утечки конденсаторов.В основе работы тестера лежит принцип контроля остаточного заряда на полюсах конденсатора, который был заряжен определенной величины в течение определенного времени. Например, емкость 1 Ф. получавшая 1 А в течение 1 с, будет иметь разность потенциалов на обкладках, равную 1 В. Схемы конвертера радиолюбителя Практически постоянный ток заряда испытуемого конденсатора С обеспечивается генератором тока, собранным на транзисторе V5. На первом диапазоне емкости можно измерять до 100 мкф (ток заряда конденсатора 10 мкА), на втором - до 1000 мкф (100 мкА) и на третьем - до 10 000 мкф (1мА). Время заряда Сx выбрано равным5 с и отсчитывается либо автоматически с помощью реле времени либо по секундомеру.Перед началом измерения в положении переключателя S2 "Разряд" потенциометром R8 устанавливают баланс моста, образованного базово-эмиттерными переходами транзисторов V6 и V7, резисторами R8, R9, R10 и диодами V3. V4 , используемыми в качестве низковольтного источника опорного напряжения. Затем переключателем S1 выбирают ожидаемый диапазон измерения емкости. Если конденсатор не маркирован или...

Для схемы "ЗАРЯДКА СТАБИЛЬНЫМ ТОКОМ"

ЭлектропитаниеЗАРЯДКА СТАБИЛЬНЫМ Существует несколько методов зарядки аккумуляторов: постоянным током с контролем напряжения на заряжаемом аккумуляторе; при постоянном напряжении, контролируя ток зарядки; по Вубриджу (правилу ампер-часов) и др. Каждый из перечисленных способов имеет как преимущества, так и недостатки. Справедливости ради следует отметить, что самым распространенным, да и надежным, остается все же зарядка постоянным током. Появление микросхемных стабилизаторов напряжения, позволяющих работать в режиме стабилизации тока, делает применение этого способа ещё более привлекательным. Кроме того, только зарядка постоянным обеспечивает наилучшее восстановление емкости аккумулятора, когда процесс разбивают, как правило, на две ступени: заряжают номинальным и вдвое меньшим.Например, номинальное напряжение батареи из четырех аккумуляторов Д-0,25 емкостью 250 мА-ч - 4,8...5 В. Каталок схема печатни плата золотаискателязе Номинальный зарядный ток обычно выбирают равным 0,1 от емкости - 25 мА. Заряжают таким током до тех пор, пока напряжение на аккумуляторной батарее не достигнет 5,7...5,8 В при подключенных клеммах зарядного устройства, а далее в течение двух-трех часов продолжают заряжать током приблизительно 12 мА. Зарядное устройство (см. схему) питают выпрямленным напряжением 12В. Сопротивление токоограничительных резисторов рассчитывают по формуле: R = Uст / I, где Uст - напряжение стабилизации микросхемного стабилизатора; I -зарядный ток. В рассматриваемом случае Ucт = 1,25 В; соответственно сопротивление резисторов - R1 = 1,25 / 0,025 = = 50 Ом, R2= 1,25/0,0125 =100 Ом. В устройстве можно применить микросхемы SD1083, SD1084, ND1083 или ND1084. Стабилизатор...

Для схемы "Немного об ускоренной зарядке"

В последнее час в продаже появилось большое количество различных зарядных устройств (ЗУ). Многие из них обеспечивают зарядный ток. численно равный 1/10 от емкости аккумулятора. Зарядка при этом длится12. ..18 часов, что многих прямо не устраивает. Для удовлетворения требований рынка разработаны "ускоренные" зарядные устройства.Например, ЗУ "FOCUSRAY". модель 85 (рис.1), представляет собой автоматическое зарядное устройство для ускоренной зарядки, смонтированное в корпусе с сетевой вилкой и позволяющее заряжать одновременно два аккумулятора типа 6F22 ("Ника") или четыре NiCd или NiMH аккумулятора типоразмеров AAA или АА (316) до 1000 мА. На корпусе ЗУ, напротив каждого аккумуляторного гнезда, в кассете имеется свой светодиод. индицирующий режим работы ЗУ. При отсутствии аккумулятора он не светится, при зарядке - мигает, по окончании зарядки светит постоянно.Естественно, наиболее полноценная работа батареи аккумуляторов происходит тогда, когда аккумуляторы одинаковые. Укв схема При этом и разряд происходят одновременно, и полностью используется их ресурс как источника питания. На практике такая идеальная ситуация почти не встречается, и приходится либо подбирать аккумуляторы для батареи, пользуясь приборами, либо "приучать" аккумуляторы к совместной работе. Для этого необходимо:- взять однотипные аккумуляторы с одинаковой емкостью и, желательно, из одной партии; - зарядить их и полностью разрядить на реальную нагрузку; - повторить заряд-разряд в составе батареи несколько раз, т.е. произвести ее "формовку".Подогнать аккумуляторы приятель к другу можно и при индивидуальной зарядке. Установив аккумуляторы в держатели батарейного отсека ЗУ. включаем его в сеть. Индикаторные светодиоды начинают мигать, сигнализируя об успешной зарядке. В противном случае нужно пров...

Для схемы "ПОВЫШЕНИЕ ЭКОНОМИЧНОСТИ ЛАМП-ВСПЫШЕК"

Бытовая электроникаПОВЫШЕНИЕ ЭКОНОМИЧНОСТИ ЛАМП-ВСПЫШЕКОбычно для повышения экономичности ламп-вспышек используют срыв генерации преобразователя напряжения источника питания в момент достижения выходным напряжением заданной величины. Основным недостатком этого способа является то, что транзисторы преобразователя после срыва генерируемых колебаний остаются подключенными к источнику питания. Транзисторы в это пора закрыты, однако наличие начального коллекторного тока, который у мощных транзисторов, применяемых в преобразователе, достигает нескольких десятков миллиампер, приводит к неоправданному расходу энергии источника питания. Так, например, начальный коллекторный ток транзисторов П4Б может быть равным 20- 40 мА. В двухтактном преобразователе общий потребляемый ток при этом составит 40-80 мА, то есть при интервале между вспышками 30 мин бесполезно тратится 0,02-0,04 А-ч, то есть почти 10% емкости одной батареи 3336Л.Указанный недостаток можно устранить, собрав преобразователь по схеме, приведенной на рис.1. Особенностью его является то, что при заданном уровне выходного напряжения посредством реле Р1 происходит отключение преобразователя от источника питания.Puc.1При установке переключателя В1 в положение "Вкл" на каскад, собранный на составном транзисторе ТЗ, Т4, подается напряжение питания и оба транзистора открываются. Схемы на тс106-10 Через обмотку реле Р1 потечет ток, оно сработает и через контакты Р1/1 подаст напряжение питания на преобразователь, собранный на транзисторах Т1 и Т2. Накопительный конденсатор С1 начнет заряжаться. Когда напряжение на нем возрастет примерно до 300 В, зажжется неоновая лампа Л1 и с делителя R3R4 положительное напряжение через лампу поступит на базу транзистора ТЗ. Транзисторы ТЗ и Т4 закроются. Обмотка реле обесточится и контакты Р111 отключат преобразователь от источника питания. Как только напряжение на конденсаторе С1 за счет саморазряда упадет до такого уровня, ч...

Для схемы "Автоматическое разрядно-зарядное устройство (АРЗУ) Ni-Cd батареи"

Большое количество аппаратуры с автономными источниками питания, находящейся в эксплуатации у потребителя, требует от последнего затрат на батарейные источники питания. Гораздо выгоднее эксплуатировать Ni-Cd аккумуляторы, которые при правильном их использовании способны перенести до 1000 циклов разряд-заряд. Однако к аккумуляторному блоку питания (АБП) надобно дополнительно иметь и зарядное устройство, и тестер для быстрого определения годности элементов питания. За последнее десятилетие в популярной радиотехнической литературе появилось немалое количество описаний автоматических зарядных устройств. Используя минимальные материальные и временные ресурсы, радиолюбитель разрабатывает и изготовляет полуавтоматические зарядные устройства. Они не соответствуют полному технологическому циклу по обслуживанию АБП или его отдельных элементов (далее изделие), утвержденному ГОСТом , не обеспечивают их полный заряд, а также надежную и долговременную эксплуатацию, особенно в тех случаях, когда заканчивается по величине напряжения на выводах изделия. Реле поворотов на тиристоре схемы А как понятно, систематический недозаряд приводит к уменьшению активности электродов и уменьшению емкости изделия. Указанный ГОСТ требует сначала разрядить изделие нормативным разрядным до величины, при которой на элементе АБП будет напряжение 1 В, а потом заряжать током, равным десятой части его емкости в течение определенного времени. Указанные режимы позволяют заряжать АБП без опасности накопления избыточного заряда, без опасности недозаряда, без опасности перегрева или взрыва. Наиболее близко по выполняемым функциям предлагаемому устройство, описанное в , но в отличие от него оно выполнено на доступной элементарной базе, не требует настройки времязадающей цепи с помощью частотомера....

Для схемы "Генератор пилообразного напряжения"

Радиолюбителю-конструкторуГенератор пилообразного напряжения Генератор, принципиальная схема которого приведена на рисунке, позволяет получать пилообразное напряжение довольно высокой линейности. Он выполнен на двух операционных усилителях и одном полевом транзисторе с изолированным затвором. На первом операционном усилителе МС1 собран генератор прямоугольных импульсов, частота следования которых синхронизирована входными импульсами. Длительность импульса и паузы определяется временем заряда н разряда конденсатора С1. Заряд конденсатора происходит через резисторы R1 и R2, а разряд только через резистор R1 (резистор R2 зашунтирован диодом Д1). Диод Д2 и стабилитрон ДЗ ограничивают положительное напряжение, подаваемое на вход полевого транзистора Т1.На втором операционном усилителе МС2 выполнен интегратор, работой которого управляют импульсы, поступающие с генератора прямоугольных импульсов через электронный ключ (транзистор Т1)."Радио, телевизия, електроника" (НРБ), 1975. N 2Примечание. В генераторе пилообразного напряжение можно использовать операционные усилители К153УД1А и полевой транзистор КП301....

Для схемы "Детектор переменного тока"

Устройство предназначено для контроля проводника с протекающим по нему переменным током. Чувствительность прибора такова, что позволяет бесконтактным способом контролировать проводники с 250 мА и более.На рис. 1 приведена принципиальная электрическая схема прибора.Датчиком переменного электрического тока с частотой бытовой сети (50 Гц) является катушка индуктивности L1. L1 выполнена в виде U-образного сердечника диаметром 2,5см, на который намотано 800 витков провода из магнитного материала диаметром 0.15...0,25 мм (рис. 2).Сердечник катушки может быть взят от центральной части межкаскадных или согласующих трансформаторов НЧ, или малогабаритных электромагнитных звонков. Главное требование к сердечнику - при намотанной обмотке L1 через центр катушки должен свободно продеваться контролируемый проводник (ее диаметр может составлять несколько единиц, а то и десятков миллиметров). Т160 схема регулятора тока Следует отметить, что через датчик должен быть пропущен только один из исследуемых проводов (фазный или нулевой), так как в случае наличия двух проводников внутри датчика может предстать компенсация магнитного поля и прибор не отреагирует должным образом на протекающий в проводнике ток. При экспериментировании с прибором брался сдвоенный сетевой кабель, в котором делался продольный разрез изоляции, образуя при этом два раздельных проводника, один из которых и помещался в U-образный захват.В обмотке магнитного захвата (U-образный датчик) наводится, приблизительно, напряжение приблизительно 4 мВ при исследовании сетевого провода с 250 мА (соответствует мощности, потребляемой нагрузкой 55 Вт при напряжении сети 220 В). Сигнал с магнитного датчика усилив...

Дорогая вещь аккумулятор, а срок службы у него ограничен. Очень хочется предпринять какие-то решительные шаги, чтобы продлить его жизнь. Тем более что основания для этого стремления, вроде бы, есть. Ведь доводится иной раз услышать от автомобилистов примерно такое: «А вот один мой знакомый как-то говорил, что у его соседа батарея восьмой год служит, и все как новая. Может он секрет какой знает, да не рассказывает...» Конечно, чаще приходится выслушивать сетования неудачника, который клянет все на свете от заводов-изготовителей до своей злой судьбы. Но все-таки складывается впечатление, что резервы долгожительства у аккумулятора есть, и немалые, нужно только каким-то образом попасть в число тех, везучих...

В такой ситуации сообщения о разных нетрадиционных методах заряда батарей падают на хорошо удобренную почву и волнуют многих автомобилистов. К тому же надо заметить, что информация, которая в них содержится, часто весьма скупа, а выгоды обещает очень большие. Правда, когда нам говорят о продлении жизни аккумулятора в два-три раза или о восстановлении «образца», давно лежавшего на свалке, то это вызывает определенное недоверие, хотя, с другой стороны, думаем мы, нет дыма без огня...

Писем, так или иначе касающихся проблемы нетрадиционных приемов заряда батареи, приходит в редакцию много. Писем разных: восторженных, скептических, требовательных, даже возмущенных. И с просьбами, и с предложениями. Чтобы отвечать на них, прежде нужно было самим получить более или менее ясное представление о предмете. Так сказать, разобраться, где дым, а где огонь. Мы попытались сделать это, просмотрев доступную (и малодоступную) литературу, но главным образом — встречаясь с сотрудниками многих организаций (НИИСТА, НИИавтоприборов, НИИАТ и др.).

Поначалу представлялось, что эта статья должна выглядеть как подборка разъяснений, полученных от разных групп специалистов. Но они во многом сходны и различаются чаще всего в толковании определенных теоретических положений. Нам же, в конечном счете, важны выводы — хотя бы по принципу большинства мнений или, лучше, наибольшей убедительности. В связи с этим дальнейшее представляет собой рассказ о том, как мы поняли суть дела.

Говоря о нетрадиционных методах заряда батарей, пользуются самыми разными определениями, причем многие применяют их весьма вольно. Поэтому прежде всего обозначим, «что есть что».

Контрольно-тренировочный цикл (сокращенно КТЦ) заключается в следующем. Батарею полностью заряжают постоянным током, затем разряжают током 10-часового режима до напряжения 10,2 В и вновь дают полный заряд. Этот цикл позволяет оценить фактическую емкость и реальные возможности «пожилой» батареи, а серия циклов в некоторых случаях несколько улучшает электрические показатели, если батарея еще годна для дальнейшего использования. Хотя о заряде с применением КТЦ некоторые говорят как о новинке, его нельзя назвать нетрадиционным: он издавна и подробно описывался в многочисленных пособиях. Методика КТЦ изложена и в основном документе по эксплуатации аккумулятора — действующей ныне инструкции ЖУИЦ.563410.001ИЭ (ранее ФЯ0.355.009ИЭ), которая прилагается к каждой батарее.

Ускоренный, или форсированный, заряд служит единственной цели — в кратчайший срок привести разряженную батарею в работоспособное состояние, что достигается применением необычно больших зарядных токов. Сам этот принцип также известен давно; современная методика пользования им изложена в руководстве РТМ-200-РСФСР-12-0032-77, которое разработано НИИАТом. В дальнейшем об ускоренном заряде мы говорить не будем, поскольку проблемы повышения долговечности аккумулятора он никоим образом не касается.

Под импульсным зарядом подразумевают применение тока, который изменяет свою величину или напряжение периодически, через определенные интервалы времени. По характеру этих показателей импульсный ток разделяют на две разновидности.

Пульсирующим током называют такой, у которого величина меняется в пределах от нуля до максимального значения, сохраняя неизменной свою полярность. Пример характеристики пульсирующего тока показан на рис. 1.

Рис. 1. Заряд пульсирующим током. Cз — емкость, сообщенная аккумулятору за время импульса t.

Асимметричный, или реверсивный, ток определяется наличием обратной амплитуды (см. пример на рис. 2); иными словами, в каждом цикле он меняет свою полярность. Однако количество электричества, протекающего при прямой полярности, больше, чем при обратной, что и обеспечивает заряд аккумулятора.

Рис. 2. Заряд асимметричным током. Cз — емкость, сообщенная аккумулятору при заряде за время tз; Сз емкость, снятая с него в течение времени tр.

Именно реверсивный ток вызывает на сегодня наибольший интерес у исследователей-энтузиастов. Выданы десятки авторских свидетельств на схемные решения, позволяющие получать зарядный ток асимметричного типа с самыми разными формами графических характеристик. Что же касается экспериментальных данных о том, как реверсивный ток изменяет электрохимические процессы в аккумуляторе, то здесь картина куда более скудная, да и противоречивая. Действительно, разработать оригинальную электронную схему непросто, но для человека, хорошо знающего это дело, такая задача по силам. Однако, прежде чем создавать конструкцию, нужно знать, что она даст и какими должны быть ее параметры. А здесь мало быть просто сведущим электрохимиком: нужны тонкие лабораторные опыты, нужен большой объем корректно поставленных эксплуатационных испытаний. Такие возможности не всегда есть даже у крупных специализированных организаций. Поэтому разработчики импульсных зарядных устройств, как правило, исходят из той модели работы и старения аккумулятора, которая отражена в массовой технической литературе. И вот здесь таится главный подводный риф. Дело в том, что конструкция автомобильных аккумуляторов не стоит на месте, качественно видоизменяется и характер их работы, а общедоступные данные отстают от сегодняшней картины иногда на добрый десяток лет. Какова же техническая сущность изменений, происшедших за последнее время? Рассмотрим это важное обстоятельство подробнее.

Еще каких-нибудь двадцать лет тому назад аккумуляторная батарея массового типа имела асфальтопековый корпус (моноблок) и деревянные сепараторы между электродами. В качестве расширителя (порообразователя) в отрицательных электродах использовали хлопковые очесы. Все эти материалы нестойки к серной кислоте. В результате их растворения в электролите появлялись органические примеси-«отравители», которые нарушали нормальный ход химических реакций. Они осаждались на поверхности электродов, экранируя активную массу, вследствие чего постепенно уменьшалась емкость батареи и снижалось ее напряжение при разряде стартерным током. Кроме того, что еще важнее, примеси способствовали появлению и накоплению крупных, труднорастворимых кристаллов сульфата свинца, что не только ухудшало характеристики батареи, но и нередко со временем приводило ее к полной потере работоспособности. Вот как выглядели основные причины окончательного выхода батарей из строя, выявленные в начале 60-х годов крупномасштабными обследованиями у нас и за рубежом: коррозия решеток положительных электродов — около 36%, сульфатация отрицательных электродов — около 30%, оплывание Активной массы — несколько более 20%, разрушения сепараторов и моноблоков — примерно 16%. Подчеркнем, что почти треть батарей выбрасывалась из-за сульфатации — болезни, которую можно пытаться лечить. И лечили, насколько возможно: во многих пособиях прежних лет можно найти советы по устранению сульфатации разными специальными методами заряда, в том числе применением КТЦ. Вот только об импульсном заряде тогда речи еще не было. Что же касается КТЦ, в особенности с большими токами, то они давали определенный эффект еще и потому, что удаляли часть осевших на электродах посторонних примесей, переводя их обратно в электролит.

Теперь перейдем к батареям следующего поколения. Бурное развитие производства синтетических материалов позволило сделать кислотоупорными и химически нейтральными все элементы конструкции. Для корпусов стали использовать эбонит и термопласты (полиэтилен, полипропилен), для сепараторов — мипласт и мипор, в качестве порообразователей стали применять БНФ и гуминовую кислоту. Все это не только существенно повысило энергоемкость батарей, но и увеличило среднюю продолжительность их жизни примерно на треть благодаря избавлению от некоторых пороков. Вот как выглядели результаты обследования тысячи с лишним батарей, вышедших из строя, в конце 70-х годов: выбракованы из-за коррозии решеток положительных пластин — около 45%, вследствие оплывания активной массы — примерно 35%, остальные — из-за разрушений сепараторов, моноблоков и по другим причинам. Характерно, что сульфатации электродов практически не обнаружено. Единичные случаи были вызваны грубыми ошибками в обслуживании (например, доливкой водопроводной воды вместо дистиллированной). Как показывают текущие проверки, примерно так обстоит дело и сейчас. Добавить к этому можно лишь то, что ныне значительная часть парка индивидуальных машин уже оснащена батареями нового типа — так называемыми малообслуживаемыми. Пока они поставляются из Югославии, но вскоре начнется широкий выпуск отечественной, еще более совершенной модели. Не вдаваясь в подробное рассмотрение аккумуляторов такого рода (это тема отдельного разговора), скажем лишь, что проблему сульфатации они окончательно отодвигают в прошлое.

Почему мы так настойчиво выделяем именно сульфатацию? Нетрудно догадаться: из-за связи с зарядом реверсивными токами. Действительно, многими серьезными исследованиями убедительно показано, что реверсивный (асимметричный) ток может быть хорошим помощником в борьбе с крупными кристаллами сульфата свинца. Однако, как мы видели, это прекрасное качество в наше время потеряло свою актуальность. Но вот с какого тезиса начинается типичное обоснование очередной разработки импульсного зарядного устройства (мы намеренно не называем автора): «Практика показывает, что при самой грамотной и аккуратной эксплуатации аккумулятора срок его службы в лучшем случае не превышает четырех-пяти лет. Основная причина кроется в сульфатации пластин. Другие причины отказа батареи у индивидуального владельца весьма редки». Вот так. Срок назван правильно, а диагноз взят из 50-х годов. Смотрим далее: «Причина сульфатации в основном связана с систематическим недозарядом и разрядом выше допустимых норм». Утверждение верное. Но потому и применяют ка современных автомобилях мощные генераторы переменного тока, стабильные в работе регуляторы напряжения. В итоге, если говорить об отклонениях, то чаще приходится сталкиваться с перезарядом. В среднем же статистика показывает следующее: около 80% времени степень заряженности батареи находится в пределах 0,75—1,0, около 15% — от 0,5 до 0,75 и лишь 5% менее 0,5. Причем «посаженная» при трудном холодном пуске батарея, как правило, вскоре восстанавливает свой заряд во время езды, не требуя помощи извне.

Таким образом, сегодня трудно назвать необходимыми довольно сложные и дорогие устройства, предназначенные для устранения сульфатации. Кое-кто может возразить: позвольте, ведь и современный аккумулятор можно засульфатировать, — скажем, если лить в него грязную воду, ездить с постоянным недозарядом и так далее. Конечно, можно. Но вряд ли следует собственные грубейшие ошибки возводить на уровень проблемы. А если считать такие огрехи допустимыми, то и расплачиваться за них нужно полной мерой. И уж совсем нелогично держать без использования специальное устройство просто «на всякий случай». Ведь при крайней необходимости можно, как и раньше, попытаться исправить положение серией контрольно-тренировочных циклов при помощи обычного 12-вольтового выпрямителя. Не следует только проводить эту операцию без нужды, поскольку каждый КТЦ отнимает частичку ресурса батареи. Принцип здесь таков: за свою жизнь аккумулятор может отдать вполне определенное количество энергии, а каждый полный разряд соответствует примерно 0,6—1,0% этого количества.

Означает ли сказанное, что заряд импульсными токами не имеет практического смысла? Нет, по нашему мнению, такой вывод был бы совершенно неправильным. Нужно только направлять этот интересный и еще не полностью изученный метод не на борьбу с призраками прошлого, а на решение сегодняшних, реальных проблем.

Такой пример. Некоторые исследования показывают, что при определенных условиях заряд асимметричным током позволяет увеличить емкость батареи на 3—5%. Что касается условий, то здесь совместно влияет многое: частота и характер импульсов тока, параметры батареи, температура. Сложно и выгода пока невелика, но работать в этом направлении, очевидно, стоит.

И еще. При заряде постоянным током в первую очередь насыщается поверхность электрода, и это мешает развитию процесса вглубь. Короткий разряд в каждом цикле асимметричного тока снимает поверхностную поляризацию, и это повышает коэффициент полезного действия тока, потребляемого от сети. Разумеется, для домашних работ это фактор несущественный, а в крупных автохозяйствах таким обстоятельством пренебрегать нельзя.

И, наконец, нельзя не упомянуть о работе ученых Новочеркасского политехнического института. Они разработали теорию, по которой реверсивный ток может быть использован против
главного нынешнего врага — коррозии решеток. Теория эта, как полагают многие специалисты, спорна, опыты пока недостаточно масштабны, да и первые выводы, трактующие необходимость частого специального подзаряда эксплуатируемой батареи (порядка 10 раз в год), не очень согласуются со стремлением снижать объемы ТО. Но уж очень заманчива цель! Поэтому можно только пожелать исследователям успехов и удач, которые приведут к приемлемым техническим решениям.

В заключение нужно сказать следующее. В стране выпускается много моделей и типов зарядных устройств индивидуального пользования. «За рулем» неоднократно публиковал сообщения о новых образцах. Упоминалось и о конструкции с импульсным током (1984, № 7, стр. 29). Такая информация основывалась на сведениях, представленных самими изготовителями, и отражала их оценку своего изделия. Получить же сравнительные, обобщающие данные по всей широкой номенклатуре было практически невозможно. Ныне положение иное. Для проведения единой технической политики в разработке и выпуске зарядных устройств назначена ведущая организация — ВНИИпреобразователь (г. Запорожье). Институт провел критическое обследование выпускаемой продукции, по результатам которого готовит соответствующие рекомендации для заводов. Мы планируем рассказать читателям об этой работе.

Сектор испытаний «ЗА РУЛЕМ»

Существенно лучших эксплуатационных черт аккумуляторная батарей возможно добиться, в случае если их зарядку создавать асимметричным томом. Схема устройства зарядки, реализующая таковой принцип, продемонстрирована на рисунке.

При хорошем полупериоде входного переменного напряжения ток протекает через элементы VD1, R1 и стабилизируется диодом VD2. Часть стабилизированного напряжения через переменный резистор R3 подается на базу транзистора VT2. Транзисторы VT2 и VT4 нижнего плеча устройства трудятся как генератор тока, величина которого зависит от сопротивления резистора R4 и напряжения на базе VT2.

Зарядный ток в цепи аккумулятора протекает по элементам VD3, SA1.1, РА1, SA1.2, аккумулятор, коллекторный перепад транзистора VT4, R4.
При отрицательном полупериоде переменного напряжения на диоде VD1 рабо-та устройства подобна, но трудится верхнее плечо - VD1 стабилизирует отрицательное напряжение, которое регулирует протекающий по аккумулятору ток в обратном напряжении (ток разрядки).

Продемонстрированный на схеме миллиамперметр РА1 употребляется при начальной настройке, в будущем его возможно отключить, переведя тумблер в второе положение.

Такое зарядное устройство имеет следующие преимущества: 1. Зарядный и разрядный токи возможно регулировать независимо друг от друга. Следова-тельно, в данном устройстве вероятно использовать аккумуляторная батареи с разной величиной энергоемкости. 2. При каких-либо пропаданиях переменного напряжения каждое из плеч закрывается и через аккумулятор ток не протекает, что защищает аккумулятор от самопроизвольной разрядки.

В данном устройстве из отечественных элементов возможно применить в качестве VD1 и VD2 - KC133A, VT1 и VT2 - КТ315Б либо КТ503Б. Остальные элементы выбираются в зависимости от зарядного тока. Если он не превышает 100 мА, то в качестве транзисторов VT3 и VT4 направляться применить КГ815 либо КТ807 с любыми буквенными индексами (находиться на теплоотводе с площадью теплорассеиваюшей поверхности 5…15 кв.см), а в качестве диодов VD3 и VD4 - Д226, КД105 также с любыми буквенными индексами.

В обязательном порядке к прочтению:

Самодельный несложный десульфатор с регулировкой по току зарядка импульсным током desulfator


Статьи как раз той тематики,которой Вы интересуетесь:

    Все то время, пока двигатель автомобиля не работает, питание электросети автомобиля происходит от аккумулятора - эта азбучная истина не испытывает недостаток в комментариях. Но, сказать о том, что ее…

    Нормально заряженный аккумулятор – непременное условие комфортной езды. Зимой особенно принципиально важно, дабы аккумулятор снабжал надежный запуск двигателя автомобиля. Современные…

    на данный момент во всех новых машинах, да и не только в них нет выключателя массы. Исходя из этого аккумулятор при долгой стоянке автомобиля 1-2 семь дней, полностью разрядится. Вот что-бы…

    Автоаксессуары На практике практически любой автомобилист сталкивался с таковой проблемой, как разряд аккумулятора. Тут имеется лишь одно ответ – осмотр источника питания на факт неисправностей и…

    Собственными руками Автомобильную бортовую сеть, пока силовая установка не запустится питает аккумуляторная батарея. Но сама она электрическую энергию не производит. Аккумулятор легко…

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.

Рис. 1 Электрическая схема зарядного устройства.

Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22...25 В.

Измерительный прибор РА1 подойдет со шкалой 0...5 А (0...3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000...18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости. Последняя буква в обозначении транзистора может быть любой.

Рис. 2 Электрическая схема пускового устройства.

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.

Резисторы применены такие R1 типа С2-23, R2 - ППБЕ-15, R3 - С5-16MB, R4 - ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.

Приведенные схемы пускового (рис.2) и зарядного устройств (рис. 1) можно легко объединить (при этом не потребуется изолировать корпус транзистора VT1 от корпуса конструкции), для чего на пусковом трансформаторе достаточно намотать еще одну обмотку примерно 25...30 витков проводом ПЭВ-2 диаметром 1,8...2,0 мм.

На автомобильный аккумулятор во время запуска двигателя и поездки действуют меняющиеся токовые нагрузки, которые со временем его разрушают.

Предотвратить сульфатацию пластин может зарядное устройство, выдающее пульсирующие асинхронные токи для восстановления емкости.

В статье рассматриваются две простые электрические схемы зарядного устройства с трансформатором, которые несложно собрать своими руками. Они позволяют продлить ресурс АКБ, сэкономить денежные средства.


Что такое сульфатация

Внутри свинцового кислотного аккумулятора постоянно протекают химические реакции, сопровождаемые выделением кристаллов серного свинца PbSO4. Они оседают на пластинах, не растворяются в электролите, мешают его проникновению к электродам.

Эти примеси ограничивают рабочую площадь пластин. АКБ начинает терять емкость, разряжается. По этой причине аккумулятор может быстро снизить работоспособность, даже прийти в негодное состояние.

Для предотвращения сульфатации пластин существует много различных технических решений, включая применение органических активаторов типа Eco Tec Power. В статье же рассматривается метод создания пульсирующих электромеханических нагрузок при заряде в среде электролита.

Они как бы «встряхивают» жидкость, не дают кристаллам серного свинца задерживаться на пластине. Промышленность выпускает различные приборы, осуществляющие функцию десульфатации при заряде.

Можно купить зарядное устройство подобного типа, но мы рассматриваем две схемы прибора, которые легко собрать своими руками.

Самое простое зарядное устройство

Электрическая схема

Для сборки прибора потребуются:

  • любой трансформатор, способный выдавать напряжение и ток, необходимые для зарядки автомобильного аккумулятора, например, 25 вольт, 150 ватт;
  • диод или диодная сборка для преобразования зарядного тока, например, на 5 или лучше 10 ампер;
  • амперметр контроля процесса заряда. Допустимо использовать , чтобы выставить первоначальный ток, а затем отсоединить прибор из схемы.

Имеет смысл на входе трансформатора поставить защиту от коротких замыканий внутри пластин и перегрузок: предохранитель на 1 ампер.

В целях безопасности следует периодически осуществлять визуальный контроль за работой этой схемы при заряде аккумулятора.

Форма сигнала

Если обычное автомобильное зарядное устройство выдает постоянный ток, то рассматриваемая схема за счет трансформатора обеспечивает его пульсации, уменьшающие процесс сульфатации пластин.

Это вполне рабочий способ, но намного эффективнее работает второй метод.

Схема с асинхронной гармоникой тока

Принцип формирования сигнала

Убирать кристаллы серного свинца с пластин позволяет меняющийся по величине и направлению электрический ток. Форма его гармоники имеет несимметричный, но повторяющийся характер.

Зарядный ток каждой полуволны должен обеспечивать нормальное протекание набора емкости аккумулятором, а разрядный - стряхивать образующиеся примеси PbSO4 с пластин и, одновременно, не препятствовать заряду. Их оптимальное соотношение по амплитуде составляет 10:1.

Схема зарядного устройства с асимметричным током

Самодельное зарядное устройство не требует при изготовлении дефицитных, дорогих деталей. Для его сборки потребуются:

  • трансформатор Т1;
  • реле напряжения К1;
  • амперметр pA1;
  • транзистор VT1;
  • диоды VD1 и VD2;
  • стабилитрон VD3;
  • резисторы;
  • предохранители;
  • выключатель SA1.

Конструкция трансформатора напряжения

Можно использовать любую заводскую модель или собрать его своими руками . Главное условие - трансформатор должен преобразовывать напряжение сети 220 в 25 вольт, иметь мощность от 250 ватт.

Эти нагрузки выбираются для возможности проведения ускоренного заряда токами в 10 ампер. Если отсутствует необходимость использования такого режима, то допустимо создавать зарядное устройство на 5А и обойтись трансформатором напряжения на 130 ватт.

Защитные устройства схемы

Предохранитель стороны 220

Выполняет задачи защиты от коротких замыканий в схеме и токов перегрузок трансформатора. Достаточно использовать плавкую вставку на 1 ампер или чуть больше.

Предохранитель выходной цепи

Защищает зарядное устройство от возникновения аварий внутренних цепей между пластин аккумулятора. Плавкая вставка подбирается с учетом выбранного рабочего режима на 5 или 10 ампер.

Реле К1

Задача: при поданном напряжении на схему обмотки электромагнит, срабатывая контакты, удерживает их в притянутом положении. Через их цепь протекает зарядный ток.

Если напряжение питания 220 пропадает, то электромагнит реле обесточивается, автоматически разрывает цепочку подключения аккумулятора. Предотвращается его саморазряд через резистор R4.

Допустимо выбрать любую модель реле под напряжение срабатывания вторичной цепи трансформатора. Можно использовать и меньший номинал, но для этого придется настроить его срабатывание за счет включения в схему питания обмотки дополнительного резистора, ограничивающего входной сигнал до безопасной величины.

Контакты реле должны коммутировать ток заряда до 10 ампер. Для этого разрешается из них собрать параллельно срабатывающую цепочку, как показано на схеме (К1-1 и К1-2).

Хорошо подходит реле напряжения серии РПУ-0.

Узел выпрямления тока

На схеме в качестве примера показаны диоды КД231А. Их можно заменить любыми подходящими по току. Например, Д242.

Измерительный прибор

Амперметр постоянного тока включается в схему с учетом полярности и возможности контроля величины заряда. Удобно использовать головку М42100.

При необходимости можно установить шунты с переключателем, предварительно откалибровав их на самодельной схеме.

Выставление режима заряда аккумулятора выполняют резистором R2. Необходимо учитывать, что:

  • ток, протекающий через амперметр, разветвляется на АКБ и цепочку разряда к R4;
  • прибор показывает среднее значение тока по времени, например, за период;
  • заряд в это время происходит током одного полупериода.

Поэтому импульсам зарядного тока в 5 ампер будет соответствовать показание амперметра порядка 1,8 А. Желательно при первичной наладке настраивать прибор замерами на всех ответвлениях.

Цепи формирования тока заряда/разряда

Нижнюю полуволну синусоиды на аккумулятор пропускает транзисторный ключ VT1. В экспериментальной схеме надежно отработал прибор КТ827А.

Выходной транзистор при заряде греется. Ему необходимо охлаждение. Тепло хорошо рассеивает металлический радиатор с площадью поверхности от 200 см кв. Под него можно использовать металлический корпус прибора.

Настройку напряжения на базе транзистора осуществляет подстроечный резистор R2 с номиналом 3,3÷15 кОм.

Стабилитрон VD3 можно использовать любой модификации. Он должен стабилизировать напряжение на входе транзистора в пределах 7,5÷12 вольт.

Номиналы и мощности остальных резисторов обозначены на схеме прибора. Их следует выдерживать.

Такое зарядное устройство с трансформатором собирается навесным монтажом в отдельном корпусе. Оно хорошо себя зарекомендовало в работе.

Другой метод исправления пластин аккумулятора объясняет владелец видеоролика Avto-Blogger.ru «Десульфатация, восстановление емкости своими руками».

Если у вас остались вопросы по этой теме, то можете задать их в комментариях.