§5 Теорема Гаусса. Теорема гаусса Теорема гаусса


Черноуцан А. И. Силовые линии и теорема Гаусса //Квант. - 1990. - № 3. - С. 52-55.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Из школьного курса физики вы знаете, что наглядное представление об электрическом поле можно получить по картинке силовых линий (договоримся под «электрическим» полем здесь понимать электростатическое поле). Проводя касательную к силовой линии, мы узнаём направление вектора напряженности (стрелки на линиях укажут, куда именно направить этот вектор), сравнивая густоту силовых линий в разных местах (т. е. число силовых линий, проходящих через единичную площадку перпендикулярно к ней), выясняем, где и во сколько раз больше величина напряженности. Однако значение силовых линий этим не исчерпывается.

Хорошо знакомое вам свойство непрерывности линий в пустом пространстве отражает, на самом деле, важнейшее свойство электрического поля. Сформулируем его: электрическое поле устроено так, что можно проводить силовые линии, соблюдая правило густоты и не обрывая их при этом в пустом пространстве между зарядами; линии начинаются на положительных зарядах и заканчиваются на отрицательных; на каждом заряде начинается (или заканчивается) число линий, пропорциональное его величине.

Вы удивлены? Вам это свойство кажется очевидным, само собой разумеющимся? Это далеко не так. Будь закон Кулона чуть-чуть иным, и провести силовые линии непрерывно уже не удалось бы. Возьмем, к примеру, точечный заряд. По мере удаления от него густота силовых линий уменьшается. Так, при увеличении расстояния от заряда в 2 раза густота линий уменьшится в 4 раза (число линий не изменится, а площадь поверхности сферы увеличится в 4 раза). Во столько же раз уменьшится и напряженность электрического поля. Но только благодаря тому, что в законе Кулона стоит \(~\frac{1}{r^2}\)! Если бы, например, там было \(~\frac{1}{r^3}\), то напряженность уменьшилась бы не в 4, а в 8 раз, и для соблюдения правила густоты половину силовых линий пришлось бы оборвать на пути от r до 2r . И это в пустом пространстве!

Математически строгим выражением свойства непрерывности силовых линий электрического поля является теорема Гаусса. Для того чтобы сформулировать и доказать ее, нам надо сначала перейти от качественного языка силовых линий к точным количественным представлениям. Начнем с того, что несколько перефразируем свойство непрерывности линий.

Рассмотрим произвольную замкнутую поверхность. Если внутри поверхности зарядов нет, то число вышедших из нее линий в точности равно числу вошедших. Удобно входящие линии учитывать наряду с выходящими, но приписывать им знак «минус». Тогда можно сказать, что полное число выходящих из «пустой» поверхности силовых линий равно нулю. Если же внутри поверхности находится какой-нибудь заряд, то, очевидно, что полное число линий, выходящих из поверхности, будет пропорционально величине этого заряда . Это и есть качественная формулировка теоремы Гаусса. Но - пойдем дальше.

Введем скалярную величину Φ - ее называют потоком вектора напряженности через некоторую маленькую площадку:

\(~\Phi = ES \cos \alpha\) . (1)

Здесь \(~\vec E\) - напряженность поля в месте нахождения выбранной площадки (раз площадка маленькая, поле можно считать однородным), S - площадь площадки, α - угол между вектором \(~\vec E\) и вектором \(~\vec n\) нормали к площадке. Посмотрите на рисунок 1: число силовых линий, пронизывающих площадку S , равно произведению их густоты на площадь поперечной площадки \(~S_{\perp} = S \cos \alpha\). Так как густота линий пропорциональна Е , полное число силовых линий, проходящих через площадку, пропорционально потоку Φ . Всем силовым линиям, выходящим из некоторой замкнутой поверхности, соответствует поток через всю эту поверхность (т. е. сумма потоков через отдельные маленькие участки поверхности). Чтобы выходящие линии давали положительный вклад в поток, а входящие - отрицательный, договоримся, чтобы нормаль к поверхности всюду «смотрела» наружу.

Теперь понятно, что теорему Гаусса можно сформулировать так: поток вектора напряженности электрического поля через любую замкнутую поверхность пропорционален полному заряду, заключенному внутри этой поверхности . Чтобы доказать эту теорему, а заодно и вычислить коэффициент пропорциональности, рассмотрим сначала простое, но очень важное свойство величины Φ .

Запишем формулу (1) в виде \(~\Phi = (E \cos \alpha) S = E_n S\), где E n - проекция вектора \(~\vec E\) на направление нормали \(~\vec n\). Если поле создается несколькими зарядами, то по принципу суперпозиции \(~\vec E = \vec E_1 + \vec E_2 + \ldots + \vec E_k\). Но проекция суммы векторов равна сумме проекций: E n = E 1n + E 2n + … + E kn . Отсюда получаем, что полный поток вектора напряженности равен сумме потоков, создаваемых отдельными зарядами: Φ = Φ 1 + Φ 2 + … + Φ k . Поэтому можно говорить о вкладе в полный поток от каждого отдельного заряда.

Докажем вначале, что вклад в поток от точечного заряда q , находящегося вне замкнутой поверхности, равен нулю. Рассмотрим два маленьких участка поверхности, отсекаемых узким конусом (рис. 2). Имеем

\(~\begin{matrix} \Phi_1 = E_1 S_1 \cos \alpha_1 = -E_1 S_{1 \perp} \\ \Phi_2 = E_2 S_2 \cos \alpha_2 = E_2 S_{2 \perp} \end{matrix}\) ,

где \(~E_1 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2_1}\) , \(~E_2 = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2_2}\) .

Из подобия следует, что

\(~\frac{r^2_1}{r^2_2} = \frac{S_{1 \perp}}{S_{2 \perp}}\) .

Таким образом,

\(~\Phi_1 = -\Phi_2\) , или \(~\Phi_1 + \Phi_2 = 0\).

Аналогичное взаимное уничтожение потоков происходит и для любой другой пары соответствующих участков.

Вычислим теперь вклад в поток от точечного заряда, находящегося внутри замкнутой поверхности. Окружим заряд сферической поверхностью радиусом r (рис. 3). Рассуждая аналогично предыдущему, получим, что в этом случае Φ 1 = Φ 2 , т. е. что поток через рассматриваемую произвольную поверхность равен потоку через сферу. А поток через сферу вычислить легко:

\(~\Phi = ES = \frac{1}{4 \pi \varepsilon_0} \frac{q}{r^2} 4 \pi r^2 = \frac{q}{\varepsilon_0}\) .

Таким образом, мы пришли к окончательной формулировке теоремы Гаусса: поток вектора напряженности электрического поля через произвольную замкнутую поверхность равен полному заряду, заключенному внутри этой поверхности, деленному на электрическую постоянную, т. е.

\(~\Phi = \frac{\sum q_{vnutr}}{\varepsilon_0}\) . (2)

Перейдем теперь к самому приятному - начнем пожинать плоды. Первое применение теоремы Гаусса - это вычисление напряженности электрического поля. Сразу оговоримся, что круг задач, решаемых таким способом, не очень широк (в отличие от способа, основанного на использовании принципа суперпозиции). Но все же он существует. Если мы, например, заранее знаем направление вектора напряженности во всех интересующих нас точках пространства, если удалось выбрать замкнутую поверхность, для которой вычисление потока вектора напряженности является простым, то тогда, может быть, нас ждет успех. Но зато какой успех!

Как известно, много лет потребовалось Ньютону, чтобы доказать, что сила притяжения материальной частицы к шару (Земле) не изменится, если всю массу шара сконцентрировать в его центре. Для проведения доказательства с помощью принципа суперпозиции ему пришлось существенно развить интегральное исчисление. А теперь смотрите, как мы просто справимся с практически такой же задачей. Возьмем шар, равномерно заряженный зарядом Q , и вычислим поле вне его - на расстоянии r от его центра (рис. 4). Из соображений симметрии ясно, что вектор напряженности поля \(~\vec E\) всюду направлен по радиусу. Выразим поток вектора напряженности через сферу радиусом r двумя способами. По определению потока

\(~\Phi = ES = 4 \pi E r^2\) ,

а по теореме Гаусса

\(~\Phi = \frac{Q}{\varepsilon_0}\) .

Отсюда получаем

\(~E = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r^2}\)

Поле заряженного шара вне его совпадает с полем точечного заряда, помещенного в центр шара.

Другой пример: найдем напряженность поля бесконечной заряженной плоскости с поверхностной плотностью заряда σ (рис. 5). Из симметрии понятно, что вектор \(~\vec E\) всюду перпендикулярен плоскости. Выберем замкнутую поверхность в виде цилиндра, расположенного симметрично относительно плоскости. Поток вектора напряженности через боковую поверхность цилиндра равен нулю, а через каждое основание площадью S он равен ES , т. е.

\(~\Phi = 2 ES\) .

Но по теореме Гаусса

\(~\Phi = \frac{\sigma S}{\varepsilon_0}\) .

Приравнивая правые части обоих равенств, получаем

\(~E = \frac{\sigma}{2 \varepsilon_0}\) .

Наконец, последний пример. Он касается одного очень важного свойства проводников. Покажем, что статические заряды проводника всегда располагаются на его поверхности. Доказательство очень простое. Раз напряженность поля внутри проводника равна нулю (иначе возникло бы движение свободных зарядов), то поток вектора напряженности через любую замкнутую поверхность, проведенную внутри проводника, равен нулю. А это означает, что равен нулю и заряд внутри любой сколь угодно малой поверхности в толще проводника. Следовательно, все заряды проводника действительно располагаются на его поверхности.

А теперь - важное замечание. Доказательство электронейтральности объема проводника опирается на теорему Гаусса, которая, как и свойство непрерывности силовых линий, верна только в том случае, если в законе Кулона стоит \(~\frac{1}{r^2}\). Вывод: справедливость закона Кулона можно проверить экспериментально. Для этого достаточно убедиться в электронейтральности толщи проводника.

Вот видите, как много интересного может рассказать лишь одна теорема - теорема Гаусса.

Определим поток напряженности электростати­ческого поля зарядов q 1 ,q 2 ,...q n в вакууме (e=1) через произвольную замкнутую поверхность, окружающую эти заряды.

Рассмотрим сначала случай сферической повер­х­ности радиусом R, окружающей один заряд +q, нахо­дящийся в ее центре (рис.1.7).

, где - есть интеграл по замкнутой поверхности сферы. Во всех точках сферы модуль вектора одинаков, а сам он направлен перпендикулярно поверхности. Следовательно . Площадь поверхности сферы равна . Отсюда следует, что

.

Полученный результат будет справедлив и для поверхности S¢ произвольной формы, так как ее пронизывает такое же количество силовых линий.

На рисунке 1.8 представлена произвольная замкнутая поверхность, охватываю­щая заряд q>0. Некоторые линии напряженности то выходят из поверхности, то вхо­дят в нее. Для всех линий напряженности число пересечений с поверхностью являет­ся нечетным.

Как отмечалось в предыдущем параграфе, линии напря­женности, выходя­щие из объема, ограниченного замкнутой поверхностью, соз­дают положительный поток Ф е; линии же, входящие в объем, создают отрицательный поток -Ф е. Потоки линий при входе и выходе компенсируются. Таким образом, при расчете суммар­ного потока через всю поверхность следует учитывать лишь одно (не скомпенсированное) пересечение замкнутой поверхности каждой линией напряженности.

Если заряд q не охватывается замкнутой поверхностью S, то количество силовых линий, входящих в данную поверх­ность и выходящих из нее, одинаково (рис.1.9). Суммарный поток вектора через такую поверхность равен нулю: Ф Е =0.

Рассмотрим самый общий случай поверхности про­извольной формы, охватывающей n зарядов. По принципу суперпозиции электростатических полей напряженность , создаваемая зарядами q 1 ,q 2 ,...q n равна векторной сумме напряженностей, создавае­мых каждым зарядом в отдельности: . Проекция вектора - результирующей на­пряженности поля на направление нормали к пло­щадке dS равна алгебраической сумме проекций всех векторов на это направле­ние: ,

Поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заря­дов, охватываемых этой поверхностью, деленной на электрическую постоян­ную e 0 . Эта формулировка представляет собой теорему К.Гаусса.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен и теорему Гаусса следует записать в виде .

Теорема Гаусса представляет значительный практический интерес: с ее помо­щью можно определить напряженности полей, создаваемых заряженными телами различной формы.

Вычисление напряженности поля большой системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно существенно упростить, используя теорему Гаусса. Эта теорема определяет поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

Для произвольной замкнутой поверхности S поток вектора напряженности через эту поверхность определяется выражением

(1.23)

где проекция вектора на нормаль к площадке dS (рис. 1.10); вектор, модуль которого равен dS , а направление совпадает с направлением нормали к площадке ().

Рассмотрим сферическую поверхность радиуса r , охватывающую точечный заряд q , находящийся в ее центре (рис. 1.11). В соответствии с формулой (1.23) поток вектора напряженности сквозь эту поверхность будет равен:

Этот результат справедлив для замкнутой поверхности любой формы: если окружить рассматриваемую сферу произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Рассмотрим теперь общий случай произвольной замкнутой поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции напряженность поля, создаваемого всеми зарядами, равна векторной сумме напряженностей полей, обусловленных каждым зарядом в отдельности; поэтому поток вектора напряженности результирующего поля будет равен:

Согласно (1.24) каждый из интегралов, стоящий под знаком суммы, равен . Следовательно,

(1.25)

т.е. поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на электрическую постоянную.

Применим теорему Гаусса для определения напряженности поля равномерно заряженной бесконечной плоскости. В этом случае ее поверхностная плотность заряда

одинакова в любом месте плоскости. Это означает, что линии напряженности перпендикулярны плоскости в любой точке, т.е. поле заряженной плоскости однородно (рис. 1.12).

Мысленно выделим в пространстве цилиндр, ось которого перпендикулярна плоскости и одно из оснований проходит через интересующую нас точку. Согласно теореме Гаусса,

С другой стороны, так как линии напряженности пересекают только основания цилиндра, поток вектора можно выразить через напряженность электрического поля у обоих оснований цилиндра, т.е.

Приведем (без вывода) выражения для расчета напряженности электростатического поля, образованного некоторыми другими заряженными телами.

Строгий вывод теоремы Остроградского – Гаусса довольно сложен, мы сделаем ее вывод для частного случая, который достаточно убедительно поддается обобщению. Теорема Остроградского – Гаусса позволяет определить поток вектора напряженности от любого количества зарядов. Для начала определим поток вектора напряженности через шаровую поверхность, в центре которой будет располагаться точечный заряд.

Отсюда следует, что из каждого точечного заряда выходит поток вектора напряженности, который равен значению q/εε 0 . Из обобщения данного положения выводится теорема Остроградского – Гаусса для общего случая – полный поток вектора напряженности через замкнутую произвольной формы поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности, поделенной на абсолютную диэлектрическую проницаемость ε а = εε 0 , то есть:

Где: n – количество зарядов, q i – заряд, заточенный внутри поверхности.

В системе Гаусса данное уравнения будет иметь вид:

Для потока вектора электрического смещения N D (вектора индукции) можно получить аналогичную формулу:

То есть, поток индукции через замкнутую произвольную поверхность равен алгебраической сумме электрических зарядов, которые охватываются этой поверхностью.

Если взять какую-то замкнутую поверхность, которая не охватывает заряд q, то каждая линия напряженности (или индукции) будет пересекать ее дважды – один раз она войдет в поверхность, а другой раз выйдет из нее. Из – за этого явления алгебраическая сумма линий индукции, проходящих через замкнутую поверхность, количество которых определяет полный поток индукции N D через эту поверхность будет равна нулю (N D = 0).

Прежде чем рассмотреть несколько частных случаев применения теоремы Остроградского – Гаусса для определения напряженностей различных электростатических полей, введем понятие о плотности зарядов.

– это физическая величина, которая характеризует распределение заряда вдоль линии (нити) или тонкого цилиндрического тела и численно равная отношению заряда к длине элемента нити:

А при равномерном распределении заряда по всей длине линейная плотность:

В СИ единицей измерения линейной плотности заряда τ будет 1 Кл/м.

Если заряд dq распределен по какому-то объему dV, то очевидно, что объемная плотность заряда будет численно равна соотношению заряда к элементу объема:

А при равномерном распределении заряда:

В системе СИ измеряется в 1 Кл/м 3 .

В случаях, когда заряд dq распределяется по поверхности dS и глубина его проникновения пренебрежительно мала, то поверхностная плотность заряда будет определена соотношением:

А в случае если заряд q по площади S распределен равномерно, то:

В системе СИ поверхностная плотность измеряется в Кл/м 2 .

Давайте вычислим , которое создано равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность имеет радиус R и равномерно распределенный заряд q, то есть поверхностная плотность σ в любой точке сферы будет одинакова.

Выберем точку А, которая находится от центра сферы на расстоянии r (рисунок ниже):

Через точку А мысленно проведем новую сферическую поверхность S, симметричную заряженной сфере.

В данном случае через поверхность S поток вектора напряженности будет равен:

По теореме Гаусса N E = q/εε 0 . Отсюда следует, что при r>R:

Если сравнить данное соотношение с формулой напряженности поля точечного заряда, можно сделать вывод, что вне заряженной сферы напряженность поля такова, как если бы весь имеющийся заряд сферы был сосредоточен в ее центре.

Для точек, которые находятся на поверхности заряженной сферы с имеющимся радиусом R, по аналогии с уравнением (7) можно записать:

Если провести через точку В, которая находится внутри сферической заряженной поверхности, сферу S / с радиусом r /

Теперь давайте попытаемся определить напряженность поля, созданного равномерно заряженной нитью (цилиндром) бесконечной длины .

Предположим, что полая цилиндрическая поверхность с определенным радиусом R заряжена с постоянной поверхностной плотностью σ. Проведем коаксильную поверхность цилиндрического типа с радиусом r>R.

Через эту поверхность поток вектора напряженности будет равен:

По теореме Гаусса:

Приравняв правые части этих уравнений получим:

Из формулы (4а) находим, что линейная плотность заряда цилиндра равна:

Использовав это равенство, найдем:

Теперь давайте определим напряженность поля, которое создается равномерно заряженной бесконечной плоскостью.

Если предположить, что данная плоскость имеет бесконечную протяженность и заряд на единицу плоскости равен σ. Из законов симметрии следует вывод, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то одинаковыми по своей величине должны быть поля по обе стороны плоскости.

Если ограничить часть заряженной плоскости 1 воображаемым прямоугольным ящиком 2 (Гауссова поверхность) таким образом, чтобы ящик был рассечен пополам (рисунок ниже).

Обе грани ящика, которые имеют определенную площадь S, должны быть расположены параллельно заряженной плоскости. Вектору Е равен суммарный поток вектора напряженности, умноженному на площадь первой грани S, плюс поток вектора Е через противоположную грань. Через остальные грани поток напряженности будет равен нулю, так как их не пересекают линии напряженности.

Повторив предыдущие рассуждения и применив теорему Остроградского – Гаусса, получим следующее выражение:

Но Е = Е 1 = Е 2 . В таком случае напряженность поля бесконечной равномерной плоскости будет равна:

Координаты точки, в которой определяется напряженность поля, не входят в формулу (12). Отсюда следует вывод, что в бесконечной равномерно заряженной плоскости электростатическое поле будет однородным, а его напряженность в любой точке поля одинакова.

И, наконец, давайте определим напряженность поля, которое создается двумя бесконечными параллельными плоскостями, с одинаковыми плотностями и разноизменно заряженными.

Из рисунка выше видно, что между двумя бесконечными параллельными плоскостями, имеющими поверхностные плотности зарядов –σ и +σ, напряженность поля равна сумме напряженностей полей, которые создаются обеими пластинами, то есть:

Векторы Е вне пластин направлены противоположно друг другу и взаимно уничтожаются. Поэтому напряженность электрического поля в пространстве, которое окружает пластины, будет равно нулю (Е = 0).